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FOREWORD

This report has been prepared under MITRE Project 7010, —

Low Cost Electronics , for the Electronic Systems Division (ESD)
of the Air Force Systems Conr~and. It Is presented in two volumes .
Volume I treats the theoretical and pragmatic concepts of employing
MIL—Qual ified 8-bit NMOS microprocessors in the decoding of linear
block codes. Volume II details the specific hardware/software
implementation of a (7,3) Reed-Solomon decoder utilizing a Motorola
MC6800 microprocessor.
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EXECUTIVE SUMMARY

This report covers a portion of the study and hardware activities
which were conducted in the fiscal year 77T-78 under,

Project 7010: Low Cost Electronics.

The overall objective of Project 7010 is to provide ESD with
technical information and data through analysis and experimentation
in specific signal and data processing areas that provide major
advantages over technologies now being used. A central part of these
investigations Is the application of Large Scale Integrated (LSI)
circui t technology to C3 systems in order to impact system performance
and life cycle costs.

It has long been a premise of Project 7010 that error coding is
one system appl ication area where LSI technology can have a dramatic
impact. Earlier project work has shown that linear block codes,
particularly a subclass of the Bose-Chaudhuri -Hocquenhem (BCH) codes,

viz., Reed-Solomon (R-S) codes, can be an effective signal processing
design resource to combat jaming and improve comunication -rel iability .
Heretofore, the implementation of such sophisticated error correcting
codes has been primarily restricted by the high processing costs as-
sociated with their decoding. Project 7010 has identified several
viable alternatives for the implementation of such codes, all in-
volving the appl ication of LSI technology.

This report details one of those alternatives: the investi-
gations made into utilizing low-cost 8-bit NMOS microprocessors to
implement coninunication error control functions. Initial Investi-
gations (See Appendix) concentrated on fundamental block coding
theory Including finite field arithmetic and the primary functions
required to’ effect block decoding . For short R-S codes, the use of a- t .
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I
complete BCH a1~~braic decoding al gorithmic

15
~ implementation is a

“computational over-kill” . Indeed, this analysis concluded that
all but the most simple block decoding approaches were too computa-
tionally complex for real—time execution on currently available 8-bit
microprocessors. Consequently, it was decided to attempt implement- - -

ation of a very simple Minimum Distance Decoding (MDD) algorithm.
The MDD algori thm for short binary (extended field) R-S codes can
be implemented via table-look-up and compare operations.

Key system, hardware, and software architectural features of
8-bit microprocessors were analyzed with regard to their suitability
for efficiently supporting the MDD algorithm . From this requirements
analysis several “design—desirables ” were identified as being critical
to the efficient execution of the MDD algorithm:

a. Word Size (W) > 4 bits to acconinodate R-S codes defined
over GF(16) or smaller fields ,~

b. Indirect or indexed addressing to allow easy access
- ~- to code tables ,

c. Non—destructive bit testability of a masked accumu-
lator for multi -symbol compare operations and erasure

masking,

d. On-chip or direct-page register availability for quick
temporary storage of received codewords,

e. Fast clock and minimum number of cycles for arith-
metic operations ,

f. Efficient interrupt structure for code symbol I/O,

and

1~ _ .
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g. Minimum chip count and voltage requirements for
easy system interface.

Restricting the search for a suitable 8-bit microprocessor to
only MIL-qualified pieces led to a detailed analysis of three
candidates: Motorola ’s MC6800, Zilog ’s Z-8O and Intel ’s 808OA.
These three CPU ’s were compared relative to the appl ication design
considerations identified in Section 2.0 and an objectively-based

-~ selection methodology was developed for the final selection process.
Part of that selection process was the careful evaluation of bench-
mark programs written for each of three candidate microprocessors.
These benchmark programs were written to evaluate the extent of the
processor’s abi l i ty to perform a critical “kernel” decoding routine -

a code symbol fetch and compare operation. The results of the 18-key
factors comparison indicated that for absolute maximum speed (i.e., de-
coder throughput) the Zilog Z-80 microprocessor was the best choice.
Careful examination of the comparison factors, however, pointed out
that the Z-80’s faster clock speed and increased table storage re-
quirement were responsible for this result. When these factors were
normal ized (i.e., fairly compared) with the 6800, the Motorola
CPU is actually a more efficient choice. If high speed parts
are considered, the MC6800B (2 MHz chip) is conclusively the choice
over the Z-8OA (4 MHz chip). Consequently, it was decided to pro-
ceed with the design , test and evaluati on of a Motorola MC6800 based
(7,3~ Reed-Solomon decoder, (Volume II of this report).

8 
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H

1.0 INTRODUI.,itN

1.1 Purpose

-: In the past, some C3 systems have achieved improved reliability
and increased throughput through the incorporation of error correction
coding. Such system modifications were often “after-the-fact add-
ons~’ which implemented weak codes capable of effecting only modest
system gains. The implementation of strong codes has been primari ly
restricted by high processing costs associated with their decoding~~
Recent technology advances in LSI microelectronics and particularly
the ubiquitous microprocessor now allow low cost realizations of error
correction encoding/decoding circuitry. As indi cated In Figure 1-1 ,

• many al gorithms which ran a decade ago on standard minicomputers can
be easily executed today with small microprocessor chip sets on

• standard cards and even completely implemented via new singl e chip
4 microcomputers. These hardware elements can be integrally designed

i nto new C3 systems or retrofitted to existing systems to effect in-
creased transmission reliability and enhance system effectiveness.
As a resul t of this, the designer can now consider error codi ng as yet

-

‘ another inherent design resource. This paper investigates the ap-

plication of one product of LSI microelectronics, the low cost NMOS

microprocessor, to the realization of simple,short block,error coding
functions.

1.2 Background

Low Cost Electronics , (Project 7010), is identifying promising

• signal and data processing areas where recent advances in device

9
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technology can be applied to realize significant gains in performance,
and to reduce the life cycle costs of ESD systems.

Recognizing the fact that reliabl e data transmission Is of par-
amount importance to effecti ve comunication , coninand and control
(C3) operations, Project 7010 has intensely investigated the impact
of error correction coding on this problem. Studies already completed
have shown that significant increases in system performance are
achievable through the incorporation of error correction coding.
Investigations have been further narrowed to studies involving cost
effective non-binary Bose-Chaudhuri-Hocquenghem (BCH) code imple-
mentation techniques)2~ Mult i—level CCD structures which perform
finite field arithmetic necessary for the implementation of strong
non-binary BCH codes have been proposedJ3~ This paper documents
an alternative technol ogy concept for implementing low—cost error

• coding hardware, viz., the NMOS microprocessor.

• 1.3 Scope

Initial error correction coding investigations undertaken as
part of Project 7010 concluded that powerful error control strategies
can be cost effectively implemented by taking advantage of recent ad-
vances in large scale integrated (LSI) circuit technology. The re-
suits of those studies state , “The technical issues (involved) can be
roughly divided into two classes: those concerned with new tech-
nology implementations of strong codes, and those concerned with

optimal coding strategies, alloca tion of design resources, and the

- - relationship of channel characteristics and net coding gain ” . The
latter issue has been quite thoroughly investigated and many fund-
amental conclusions have been reported. In this paper we shall

• bu ild upon these conclusions by concentrat~4g on the first technical

11

- -  - - . ~~~~~~~~~~~~~~~~~~~~~~~~~~~ :~~~::. - 

- - :i . . -—

III_ -~__- --~~~~~ _-- ——‘- -‘———-. — 5-- ---— -5-.——- —~~~
—-— — -‘ ~~~~~~~~~~~~ 

.
~~~~~~~~ — — I_—_ ‘~ 

—



- - -‘—-.5— --.- .5 
__-..-H~.-

Issue, that of new technology implementations of error correcting
codes . 

-

Previous efforts in this direction have resulted in proposed
multi-level CCD structures for the implementation of powerful non-
binary based codes .13~ While the exploitation of CCD LSI technology
in error coding looks extremely promising , this report will investi-
gate the advantages and disadvantages of another prodigy of the re-
cent LSI technology advance - the microprocessor.

It has been shown that C3 systems ’ effectiveness can be sub-
stantially increased by empl oying error correction coding. Specif-
ically, a class of cyclic linear block codes , the non-binary BCH
codes , have been shown to be particularly advantageous in this regard.
In light of these findings,the efforts reported on herein are limi ted
to the implementation of simple non-binary BCH error correcting codes
utilizing microprocessors .

In order to limi t the scope of this investigation, two basic

ground rules have been established :

1. Only low-cost NMOS microprocessor implementations
will be considered. This includes only low to
medium speed NMOS microprocessors . Since these
devices are currently the predominant entry in the
microprocessor field, advantage wi l l  be taken of
thei r availability, low cost , increasing performance,
and design refinements . High-speed bit slice bipolar
microprocessor-based designs , whi le  not i n i t i a l l y
considered in this report , will be investigated as a
follow-on to this effort in order to achieve higher
data rates, to acconmiodate increasingly complex de-
coding algorithms , and to real ize improved real-time
operations.

2. Direct implementation of non-binary finite field arith-
metic operations will not be attempted. Instead, unique

12
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processing algori thms and techniques will be
utilized where necessary to accommodate the
finite field arithmetic requirements of the
selected BCH codes. While it seems completely
foreign for a binary-logic microprocessor to
perform non-binary field ari thmetic , it will be
shown that th is  anomaly is not restrictive. In-
deed, by taking advantage of those operations
which the binary microprocessor does most efficiently,
It will be shown that such “foreign—field” ari thmetic
can be avoided.

Section 2 of this report analyzes key archi tectural features
of NMOS microprocessors to determine those characteristics which
are best suited to performing decoding functions. Based on this

analysis Section 3 presents a methodology for selecting a candidate

microprocessor for decoder design . Section 4 draws conclusions rel-

ative to predicted performance of the candidate mi croprocessor. The

Appendix to this report reviews some theoretical fundamentals of

linear block coding which are applicable to low-cost decoder design

• us ing NMOS microprocessors .

I!
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2.0 MICROPROCESSOR REQUIREMENTS ANALYSIS

It is generally agreed that most any microprocessor can satisfy
any appl ication as long as speed and ease of programing are not
critical . However, for error coding applications these two factors

are very critical since they directly affect the decoder’s throughput
and the implementation cost. In order to employ low-cost NMOS micro-
processors for decoding linear block codes, processors that are best
able to perform the decoding operations must be chosen. Given that
throughput and programing ease are important, choosing a particular
code and decoding algorithm further defines the design requirements.
It must be remembered that while all microprocessors exhibit strong
and weak points , often the intended application does not require the
use of a processor ’s strong points , nor does the application neces-
sarily suffer from a processor’s particular failing . When considering
other specific applicat ions , (e.g., different codes and/or decoding
algorithms), the analysis of suitable microprocessor features would
be conducted in the same manner. However, the resul ts of such an
analysis and the conclusions drawn are likely to be quite different.
In this study, the microprocessor design requirements must be viewed
with regard to the appl i cation at hand viz., decoding a (7,3) Reed-
Solomon code using a Minimum-Distance Decoding algorithm . The
requirements analysis can be divided into software, hardware and system
design considerations.

2.1 System Considerations

Al though both hardware and software design considerations are

important In microprocessor selection , it is generally specific
system considerations of the intended application which quickly
narrow the field of possible microprocessor candidates. Real-wor’d
facts such as availabilit y, price, support, documentation , history ,

14
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etc., all bear upon the final selection. If it is possible to
elimina te many of the potential microprocessors early in the system

— design consideration phase,then more time will be available for
detailed hardware and software analysis of the remaining candidates.
In this light,it is important to analyze five general system con-
siderations.

2.1.1 Manufacturer ’s Comitment

The maturity of a product can often be judged by the amount
of comitment a manufacturer has made in the product ’s establishment.
Given that a product has been thoroughly researched (technically
as well as marketing-wise), a manufacturer should be eager to show
highly visibl e proof of his complete support and confidence in its
viability. The level of support provided can make design life
either di fficult or easy for the engineer. Due to the comp lexity of

microprocessor devi ces, each one exhibits certain unique idiosyncra-

des which may be an advantage or disadvantage to a designer. Ad-
equate documentation, application notes, and design aids can prove
invaluable in pointing out these idiosyncrasies . It is very im—
portant to firmly comprehend the manufacturer ’s microprocessor pro-
duct support Intentions. If the designer ’s selected product is

introduced, accepted, and then dropped by the manufacturer, design
testing, production , and other life cycle costs may be adversely

affected.

2.1.1.1 Software Support

Manufacturers willing to offer significant software sup-

port for their microprocessors reflect strong product commitment.
Software is a relatively new and alien operation for semiconductor

houses. A venture into this area producing a capable family of soft-
• ware support items indicates a sizable investment and should be viewed

15
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as a product of determination on the part of the manufacturer. As a
,mlnimum, adequate software support should consist of the following
items : 

—

1. Cross and resident assemblers,

2. Monitor program (with minimal debug capability),

3. A resident text editor,

4. A non-resident simulator.

Additionally, cross—compi lers for high-level languages
and a user group library of common programs are useful software
tools. The manufacturer may rely on outside sources (contractually
or not) such as system “software houses” to make such software
available. In either case,representatives should be readily avail-
able and willing to answer any software questions and issue soft-

ware revisions as necessary.

2.1.1.2 Documentation

An excellent indicator of a manufacturer’s commitment to
his microprocessor is its accompanying documentation. The micro-

processor , being a software programmable, highly complex design,
requires a completely new documentation approach, radically dif-

ferent than the customary transistor data sheet or the UI SSI cir-
cuit specification. Microprocessor manufacturers are generally

equal to the task and supply great amounts of documentation for their

products. Documentation must be viewed not so much for its quantity
but with regard to its quality and organization. Proper documenta-
tion organization requires separate sections on software (Instruction

set , interrupt execution , support, etc.), electrical characteristics,
CPU architecture , support chip descriptions, timing, diagrams , flags

16
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etc. Wel l written, efficiently organized, complete microprocessor
documentation can be an effective marketing aid for a manufacturer
and a definite asset to the designer.

2.1.1.3 Application Notes

One of the unique aspects of the microprocessor industry
is the proliferation of system application notes. This document-
ation has been recognized by the designer as a principal means of
“coming up to speed” on a new dev ice. Manufacturers have real ized
that impressive applications literature is a formidable weapon in
the microprocessor marketplace and can be the deciding microprocessor
selection factor for many a timid “fi rst-time” designer. Application
information should be regarded wi th a wary attitude when it is in
the form of “see how we did this with this!” Equally as bad are

.5 

the application notes that illustrate only one Inflexible config-
uration . Often,manufacturers will disseminate application notes

• - which show a unique new design approach using some of their other
semiconductor components. Such notes should not be comercially
suspec t, especially if the manufacturer’s pieces are merely illus—
trated as “representat ive ”. Second sourcing often initi ates fierce
competition in the only unspecified area - application notes. In
such a case the designer is obviously the beneficiary of the second
source ’s attempt at gaining market credibility by demonstrating ap-
pl ication expertise.

2.1.1.4 Design Aids

Design aids are a manifestation of a manufacturer’s com-
mitment to get working hardware into the customer’s hands as quickly

• as possible. These aids generally take the form of special intro-
ductory chip sets, prototype boards and supporting card sets. By

• 17 
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vertically integrating their manufacturing efforts, many semiconductor
houses use this approach to directly compete with small system houses .5

as unbundled microcomputer card suppliers to OEM users. Such an
es~ab1ished product line guarantees the manufacturer and his micro-
pr6cessor some degree of acceptance in the end-user community and more
importantly opens a market for his support circui try (RAMs, ROMs ,
etc.). The designer should expect the serious manufacturer to offer
minimal software aids with his prototype cards such as a monitor
programs with some limi ted debug capability . Wel l established micro-
processor lines offer card sets housed in attractive packages complete
with resident software systems including assembler, monitor , text
editor, and in-circui t emulation capability for prototyping hard-
ware. These units are called “microprocessor development facilities”

and may include such sophisticated peripherals as floppy disks , h igh
speed line printers , and CRT terminals. All of these hardware design
aids , when supported by sufficiently capable software,can greatly
benefit the designer. Particularly, a sophist icated microprocessor
development system can provide detailed design assistance starting
from Initial timing considerations through final debug of the hard-
ware and software integration effort.

.5 2.1.1.5 Second Source

When a manufacturer enters legal arrangements with other
manufacturers to allow second sourcing of a proprietary part, this
is an excel lent sign of product commi tment. The manufacturer’s
effort to quickly establish his piece as the dominant (volume) part
in the market is usually based on faith in his product, and a firm
belief that the volume sales realizable are large enough to insure
an adequate return. Second sourcing entrenches a product and better
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insures its continued supply and support. Designers should absol utely
insist on recognized second sources of microprocessors before selection
of the part for a major design .

2.1.2 Standardization

Standardization is often criticized as being a binding
constraint on technological innovation and advancement. While this
may be true, there are certa inly many des ign, supply and maintenance
advantages to be realized via standardized microprocessors and soft-
ware. Realistically, however , the concept as far as the microprocessor
world is concerned , is a “pipe-dream” . W ith the enormous investments
made in the development of complex LSI microprocessors, support chips
and software, it is highly unlikely that manufacturers will agree
to standardize any product lines . The most the designer can hope
to take advantage of is the so called “de facto” standards. These
are pieces and des igns that have been w idely accepted by the user

.5 community for their versatility and sound engineering. In the mi cro-
processor field the de facto standards would seem to be the Intel
808OA and AMD ’s 2900 bit slice family. The Intel product may have
achieved this pos ition largely because of the long lead time it enjoyed
before the ava i lab ility of other microprocessors, rather than from any
of its unique capabilities . Nonetheless , the des igner should not
rush to j ump on any de facto standard bandwagon . If a microprocessor
of different design than that of the de facto standard best suits
the intended application , and satisfactorily meets all other selection
crlteria,then it should be chosen .

2.1.3 Availability

Nowhere else does the word availability connote so many
different meanings than in the marketing vernacular of the semi-
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conductor Industry. Manufacturers, pressured by the economic realities
of a highly competitive market often rush to announce new pieces long

before they are “available” for delivery. Ful l page advertisements,
preliminary data sheets, and revolutionary technological advancement
announcements characterize this phase of the product development.
With initial fabrication and testing off the development line , samples .5

are “ava i lable ” to “selected customers ” for application testing. In
real ity the product is not readi ly “available ” to everyone and cer-
tainly is not in production . The last phase of the development sees
the piece “ava i lab le ” in full scale production . This phase continues
wi th announced price cuts as the manufacturer rides the prophetic
“learning curve ”,tweaking his process , increasing yield, and incor—
porating design enhancements . It is often a long time from piece

.5 announcement to full scale devel opment and there are many case his- .5
tories of products that simply didn ’t complete the cycle although
they were considered “available ” . The past record of the manufact- .5

urer is applicabl e here. A manufacturer ’s reputation and credibility
in the industry are often intangible factors which are subjectively
evaluated by a designer. There is nothing subjective , however , about

an excellent production record and a history of successfu l field ap-
plications . These events mark the ‘availability” the designer must
look for.

2.1 .4 MIL-Qual ificati ons

One system consideration that elimi nates many microprocessors
from the selection process is the requirement for military qualified
parts . Al though the current design trend is to use redundant com-
mercial parts in mil itary qualified environments (e.g., boxes ,
shel ter, etc.), this is not often the case in systems designed for
operation under severe environmental or battle conditions. In this
selection study of 8-bit NMOS microprocessors our efforts are to be
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confined to evaluation of the three microprocessors currently under-

going MIL-qualifi cation. Intel ’s 8O80A and Motorola ’s MC6800 are
.5 under test and evaluation by the Air Force ’s Rome Air Development

.5 CenterJ~
3
~ These processors’ slash sheets are being prepared per

MIL-M-38510 and will specify circuits to be tested per MIL-STD-883.
Additionally, Zilog Corporation offers its Z-8O microprocessor in
selected parts which have been screened and tested per MIL-STD-883B .
These three pieces will be the only candidates further cons idered for
implementation of the Reed-Solomon (7 ,3) decoder.

2.1.5 Benchmark Programming

A much maligned method of evaluating microprocessors is
the comparison of “benchmark” programs . These comparisons may in- .5

deed be biased when a few “typical” routines are selected and pro-

.5 

‘ granined on severa l microprocessors . The bias obviously results from

.5 
the “typicalness ” of the selection, since some microprocessors will

j outperform others in different tasks. For a specific application ,

however , this prej udice is exactly what is desired . It is desired
to know exactly which mi croprocessor performs the intended appl i-
cation tasks best. Therefore , benchmark program comparison of key

.5 
applIcation tasks becomes an extremely important system consideration .

.5 

2.2 Software Considerations

The programmer ’s view of a microprocessor is governed by its

software features. Unique software characteristi cs make a certain

processor attractive for different applications by simplifying the
software writing and debug task, and by providing more eff icient pro-
gram execution . For the (7 ,3) Reed-Solomon decoder application this

.5 means “tighter ” (more efficient) ~code, faster execution times and
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therefore increased decoder throughput , and small pro iram storage
space requirements .

2.2.1 Word Size

One of the first considerations of any processor-based
system is the size of the address and data words. Classically, the
address word width is an integer multiple of the data word width, but

not always . Microprocessors with small data word sizes , such as

4—bits , must utilize much longer address word sizes to directly ac-
cess reasonable amounts of memory space . Generally speaking, most

NMOS microprocessors availabl e today have data word widths of 4, 8
or 16 bits and exhibit address word widths of 16 bits . The MDD
algori thm for small block codes does not require great amounts of
memory and therefore the absolute addressing range of the micro-
processor is relatively unimportant. The data word size, however , re- .5

presents a critical parameter in decoder performance. The main data
element in the MOO algorithm is the code symbol. As shown in Section
Al.l , this finite fiel d element must be represented as an m-tuple

3 over GF(2) in the binary realm of the microprocessor. Therefore,a
relationship must be established between m and the width of the
data word , which we shall call W. For the (7 ,3) Reed-Solomon code

.5 m = 3, and for a (l5 ,k) R-S code m = 4. It has already been shown
that the full table search MOD algorithm is difficult if not impos-
sible to spatially or temporally rea lize with longer R-S block
lengths and therefore a limi t of m < 4 would seem appropriate. This
would seem to suggest a data word width of W = 4 bits , sometimes
cal led a “nibble” or half of an 8-bit “byte ”! Data manipulation in
the decoder would then be equivalent to handling m-tuple binary
code symbols. The tradeoff Involved wi th W = 4 is the execution
time involved in fetching and compari ng data (symbols) one-at-a—time .
Most 4-bit microprocessors are PMOS , slow , multi -cycle addressing
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machines which requi re severa l address cyc les to fetch a particular
4-bit word . Since a large portion of the MOO algorithm requires

.5 fetching codewords from a table and comparing them symbol-by-symbol,
it is essential that this fetch time be minimi zed. This objective
can be achieved through “multiple-symbol fetching” . Multiple-
symbol fetching can be best accomplished with the largest word
width microprocessor currently available, the W = 16 bit processor .
These processors can provide up to four 4-tuple symbols or five
3-tuple symbols per fetch. The problem then revol ves around the
processor ’s capability for “nibble manipulation ”. This is to say,
given a multiple -symbol fetch, how many nibble (symbol ) operations
must be performed to effect symbol compar isons. Microprocessors with
W > 4 offer only limi ted (if any) di rect nibbl e operations. Nibbl e
moves must be accomplished via bit-shifting, or more eff ic iently,
fetch and mask operations . Using a non-destructive masking opera-
tion, the results of a multiple-symbol comparison (XOR operationY

.5 
can be recognized. Clearly, for larger and l arger W , fewer symbol
fetches and word (i.e., mul tiple-symbol ) comparisons need be made.
The number of symbol comparison results that must be checked, how-

ever , is independent of W and i s always equa l to N, the block s ize
of the code. Therefore, it is concluded that for decoding (N,k)
R-S codes,W = 16 is the optimum data word width parameter. This
dictates the use of a 16-bit mi croprocessor. Lest a final conclu-
sion be reached too quickly, it must be remembered that 16—bit
microprocessors are relatively new entries in the microprocessor
field. This fact become s extremely dominant- ‘in the analysis of
other design factors .

2.2.2 Addressing

Various addressing techniques are provided as part of a
microprocessor ’s architecture . Regardless of the spec ific techniques
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used, the objective of all addressing schemes is the same - to allow
references to any point in the mi croprocessor address space. Micro-
processors with extremely flexible addressing modes are better suited
to a wide range of applications . Generally, most microprocessors
offer the most trivial forms of addressing, “direct” and “immediate”.
Savings in program development and execution time, however, result
from the ability to reference locations in the address space without
including a full set of address bits in each and every instruction.
To this end, many microprocessors offer “abbreviated” addressi ng
utilizing only 8-bits to define the lowest 256 memory locations .

.5 
An extension of this concept yields “relati ve” , or “paged” addressing
schemes utilizing some register (e.g., the Program Counter , Base
Page Register , etc.) contents to further define the complete ad-
dress. This concept , in turn , can be related to “indexed” addressing
using a specially designated register. If the CPU architecture pro-
vides on-chip registers, these locations may be considered part of
the address space and accordingly addressed by so-cal led “register”

-
- 

or “imp l ied” addressing modes. One of the most sophistica ted ad-
dressing methods available is “indirect” addressing. Combined with
on-chip registers this mode can be enhanced to “register-indirect”
and feature “auto-increment” and “auto-decrement” capability as well.
The power of indirect and indexed addressing becomes readi ly apparent
when an application program requires the manipulation 0f members
of arrays of varying sizes , or the development of relocatable soft-
ware . The (7 ,3) R-S MDD algori thm requires an extreme amount of table
look-up and scratchpad storage manipulation. The candidate micro-
processor should therefore exhibit powerful addressing modes to ease
the programing of such operations , reduce the program si ze, and

.5 inc rease execution speed .
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2.2 .3 Internal Registers

On-chip registers are an extremely Important characteris-
tic of CPU architecture for three main reasons: 1) they allow
additional addressing modes in the CPU, 2) register to register op.

-
.5 erations generally provide fas ter data manipulation operations than

memory-reference instructions and , 3) if the on-chip registers are
flexibly capable, fast interrupt response is possible through “bank
switching” techniques. Al though as a rule it can be stated “the

.5 more on-chip registers the better” , the flexibility of such registers
must be careful ly analyzed. Simpl e “genera l purpose ” or “scratch-

.5 pad” registers are adequate for operand storage and retrieval , but

are “bottlenecked” if they cannot directly provide arguments to
an Arithmetic Logic Unit (ALU) or be used in enhanced addressing
modes.

.5 . In order to provide maximum flexibility the on-chip registers
should be capable of receiving as well as sourcing operands to the ALU.
Furthermore, the CPU ’s instruction set should directly utilize these
registers to provide immediate operands or indirect addresses. Ad-
ditionally, they should facilitate rapid handling of return addresses
and status indicators during subroutine or external interrupt opera-
tions. One of the most powerful uses of on-chip registers is stack
pointing. If the return addresses of subroutines and interrupt handlers
are stored in a push—down last-in—fi rst—out (LIFO) stack, such a stack
can be realized with on-chip registers or external read/write memory.
With on-chip storage there is always a limi t to the “depth of sub-
routine/ interrupt nesting” . Such a constraint must be carefully re-
garded when programming such microprocessors , for if an on-chip stack
overfl ow does occur , there is normally no alarm inditatlon and soft-

.5 ware malfunction (or lost data ) will occur. On the other hand, off-
chip stack storage offers vi rtually unlimi ted subroutine nesting
and facilitates the implementation of very powerful stack algorithms .
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Utilizing off-chip storage for the stack, only a stack pointer need be
stored in an on-chip register. Multiple stack-pointer registers in
conj unction wi th register-to-register operations provide a very power-
ful stac king capability . It is obvious that maximum register flex-
ib ility requires an enormous penalty In CPU design complexity, a trade-
off that quickly becomes prohibitive. However, multi ple accumulators,
processor status registers , Index registers and stack pointers are
all desirable features In a flexible CPU architecture . The (7,3)
R-S decoder application under consideration here , can benefit greatly
from the increased execution speed and data manipulation ease afforded
by the use of multi-purpose on-chip registers .

2.2.4 Ari thmetic and Logic Unit (AL U)

A microprocesso r ’s ALU represents the heart of its number-
crunching ” capability. Al though it is the central element in these
operations , a sophisticated ALU does not guarantee efficient number
crunchi ng. Many other processor features such as addressing, I/O cap-
ability , interrupt handling , instruction set, etc., have a far more 

.5

profound effect on the microprocessor’s arithmetic and logic processing

capability. Nevertheless , the structure and adequacy of the micro-
processor ’s ALU is important in most appl i cations. Basically, an ALU
must perform ari thmetic and logic operations on binary data in incre-
ments of the basic data word size (W). Since most microprocessors per-
form two ’s complement ari thmetic, this requi res the ALU to perform

.5 
binary addition, one ’s complement , Boolean operations (I.e., AND , OR
XOR , NOT ) and single bit left or right shift operations . More complex
data operations , and multi-byte operands , may be supported by the micro-
processor ’ s instruction set and control logic. The resul ts of an
ari thmetic or logical operation are contained in the accumulator of
the CPU and refl ected In the flag positions of the Processor Status
Word . Complete status flag Indicators support the development of
sophisticated instruction sets and therefore increase computational
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capability. Most microprocessors offer the basic ALU status flags
.5 indIcating carry, overfl ow, zero and s ign. Many processors now of-

fer additional flag indications of half-carry, parity, interrupt
enable/disable , and subtract. Many of these flags are specifically

- - 
.5 included to accommodate Binary Coded Deci mal (BCD) operations in the

ALU. The (7 ,3) R-S decoder application does not require any BCD
capability . The multi-symbol compare operations of the MDD algorithm
require the Boolean XOR operation and a check of the accumula tor zero
(Z) flag for the results. Symbol-masking for mul ti-symbol comparison
results and erasure gating can be performed with the Boolean
AND operation. Whether or not the symbol -masking operation Is
“non-destructive” to the contents of the accumulator In order to
position the status flags , is a function of the Instruction set , since

the ALU Is only commanded by the Control Unit’s decoding of the Instruc—
tion. This “non-destructive ” masking operation is of critical Impor-
tance in the MOD algorithm s ince it affects execution time (I.e.,

.5 
throughput via the time required for register saves and refetches).

2.2.5 Instruction Set
-

- 
; A microprocessor ’ s instructi on set is perhaps the most

touted of all its features . Al though often marketed on sheer numbers
of Instructions a lone , microproces sors that do not incl ude the neces-
sary complementary architecture cannot support very sophisticated
instructions. The three CPU architectural features which most im-
pact the microprocessor’s potential instruction set are: 1) internal
register organization , 2) allowed addressing modes, and 3) status
indicators available. As discussed In 2.2.2 through 2.2.4, these
features must be optimized to realize a sophisticated , powerful
instruction set. Generally most instructions are designed to operate

on data words of width W, the bas ic data width of the microprocessor.
Restricting the microprocessors under consideration in this report to
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4

W = 8—bit militari zed NMOS CPUs, this basic word is an 8-bit byte.
Some instructions will provide operations on double word or 16—bit
quantities . These Instructions are normally limited to loading a
16-bit register such as an Index register or pointer and ‘lncrementing/
decrementing that register. Sophisticated instruction sets for 8-bit
microprocessors will offer some 16-bit (doubleword) arithmetic oper-
ations . For manipulation of BCD digits , half-word, 4—bit or nibble
operations are desirable. Unfortunately, at present all of the
available 8-bit NMOS microprocessors provide BCD ari thmetic via the
ALIJ and special status flags , but do not provide general nibble
manipulation instructions. In the case of R-S decoding it has been
shown (see 2.2.1) that a 4-bit symbol is optimum for MOD. Were
direct nibble manipulation instructions available, the MDD algorithm

- . 5  could be performed more efficient ly. Instructions which operate
on Individual bits of a word find widespread application in control
and cryptographic applications , instructions designed to test, set,
reset , and move bits are not available in most 8-bit NMOS mic ro-
processors , nor does the MOD algori thm of this applicati on require
their use. A microprocessor’s instruction set can be divided Into
fi ve general categories of instructions:

1. I/O Instructions - Input/output instructions are
of prime Importance in most microprocessor appl i-
cations. Efficiently getting data into and out of
the microprocessor is of utmost importance in op-
timizing throughput. Two general I/O schemes are
generally recognized: (1) “memory mapped” with memory
reference Instructions , and (2) special I/O instruc-
tions which do not address the microprocessor’s
main address space. Whichever scheme is utilized
It is important not to tie up I/O operations by a
CPU architecture which exhibits “accumulator—bound”

-j I/O operations. This Is to say all I/O operations
must use the acc umulator and only the- accumulator
as the source and destination register. Further-
more, an arch itecture which facilitates multi-word
I/O transfers can be an effective low speed alternative
to DMA.
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2. Load Instructions - Load and store instructions
are designed to efficiently move data into, around,
and out of a microprocessor. As with I/O instruc-
tions, the CPU architecture must not restrict these
load operations to a specific register (e.g., an ac-
cumulator). 8-bit and 16-bit loads from main memory
to any on-chip register(s), and register-to-register
moves must be provided. Load instructions are the
chief beneficiaries of the efficiencies provided by
sophisticated addressing techniques. For example,
load operations involved in array processing and file
handl ing operations particularly benefit from in-
di rect and indexed address ing. As in I/O instructions ,
the capability to load multipl e words (i.e., block
moves) can be a very useful feature.

3. ALU Instructions - Ari thmetic operations (e.g.,
AND, SUBTRACT , INCREMENT , DECREMENT, COMPARE, etc.),
and Boolean Logic operations (e.g., AND, OR, XOR ,
etc.) are performed in the Ar ithmetic Log ic Unit via
specific ALU instructions. While most microprocessors
prov ide these bas ic ALU instructions , di fferences
ar ise concerning where the operands are derived from
and where the result can be stored. Once again , “accumu-
lator bound” ALU operations are least desirable.
Ideally the CPU’s internal regi sters and external memory
should be able to source and sink the operands. Addition-
ally, block operations such as “compare and step”
are useful memory search Instructi ons . Individual
bit testing, setting and resetting wi th a singl e ALU in-
struction is an extremely desirable feature, particularly
for control applications. Special arithmetic instructions
which operate on BCD data are often used for efficiently
processing instrumentation data without requiring BCD-
binary conversion. The MOD algori thm makes maximum use
of the XOR operation with Indexed or indirect addressing
for performing comparisons between the received code-
word and val id codewords stored in the codetable.

4. JUMP, BRANCH & CALL - These instructions provide the
microprocessor with decision direction. By altering
the Program Counter , instruction execution se-
quences can be varied depending on dynamic run-time
conditions . Both conditional and unconditional jumps and
branches are extremely effective for transferring
program control . Return instructions return program
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control to the software point in effect before
the Call or Interrupt. Conditional returns are
very powerful means of continuing or discontinuing
subroutine execution conditioned on some specific
run— time criteria.

All of these instructi ons are enhanced by a
wide variety of addressing modes. Branches or j umps
that can be relative , paged, indexed , direct, or in-
direct provide the programmer many efficient ways of
directing program flow . The MDD algorithm requi res
many conditional decisions which may employ these In-
structions. The trade-off in this regard, particularly
with subroutines , is the time requi red for subroutine
linkage to be established and broken down , and its
effect on decoder throughput .

5. Status Instructions - We have seen in 2.2.4 that every
microprocessor offers some selection of status flag
indicators displ ayed in the Processor Status Word or
Flag register . Instructions to directly act on these
flags are often Important in directing program flow.
These instructions normally consist of setting or
clearing a particular flag. Ma ny microprocessors ’
instruction sets do not include these -Instructions . .5

This Is not considered a major deficiency, however,
because the flags can be set or reset by performing
some register-to-register operation which requires
no more execution time than any set/ reset flag in-
struction.

Example: The Z-80 micropro~~ssor does not
provide a reset carry bit Instruc-
tlon. This operat ion can be simply
performed by logically ANDing the
accumulator with itself; an opera-
tion which executes In the min imum
instruction time.

The most widely used status instruction is normally
the clear or enable interrupt flag. Using this in-
struction the mi croprocessor can control its interrupt
envi ronment. This status instruction is very impor—
tant -In the MDO algorithm for interrupt receipt of
code symbols while decoding previously received code-
words .
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2.3 Hardware Considerati ons

Microprocessors execute their software, hopefully efficiently,
through a unique amalgam of hardware idiosyncracies. When evaluating
microprocessors for specific applications it is not enough to merely
consider the ramifications of their software features. A designer
must also carefully weigh the advantages and disadvantages offered
by the microprocessor ’s hardware design . Hardware in this sense
means not only the architectural characteristics of the monolithic
CPU chip itsel f , but the support requi rements of the mic roprocessor
as well. There are ten specific hardware considerations that should
be considered.

2.3.1 Clock

All microprocessors , regardless of their technology, re-
quire some sort of clock signal to synchronize their operation.

-: 
This , however, is where the similarity ends. Some mi croprocessors
require an external (off-chip) clock generator. This generator
may be required to provide the microprocessor with high-level , multi-
phase clock signals. Contrasted wi th this approach are microprocessors
which include on-chip clock generation , multi -phase , and dri ver cir-
cuitry. Such chips merely require an external crystal , RC c i rcuit
or single-phase low level clock for proper operation. Microproces-
sors offering on-chip clock generation are easier to design into a
system, require fewer packages and avoid complex multipl e phase
clock adjustments .

2.3.2 Chip Voltages

. The number of di fferent power supply vol tages that must
be provided to a microprocessor chip affects distribution wiring,
circui t layout, and power requirements. Many NMOS microprocessors,
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like their ancestral PMOS forefathers , require multiple power sup-
ply voltages, generally +5 and +12 volts. When interfacing with bi-
polar analog circuitry, these voltages are sometimes available, but

newer generation devices only requi re a single +5 volt supply. This
is highly desirable when designing a printed circuit card power
plane layout, and is compatible with TTL logic circui ts . The ad-
vantages of a 5-volt-only microprocessor chip may be quickly out-
wei ghed , however , if the designer is constrained to use support
chips which require multiple voltages (e.g., UV-erasable Read Only
Memories or dynamic RAMs).

2.3.3 Power Dissipation

The amount of power a microprocessor dissipates is a hard-
ware characteristic which is an integral factor in the system design .
Naively, we could conclude that the smaller the power drain the bet-
ter. This reasoning would lead to an ultra-low power CMOS micro-
processor chip such as the RCA 1802. Obviously, this philosophy
neglects the intended appl ication . The application must ultimately
drive all microprocessor design considerations , both hardware and
software. Some applications, such as satellite service or other
systems with critical power budgets , may demand low power CMOS
microprocessors. Other real—time , heavily interrupt-driven ap-
pl ications mi ght require processing speeds only available through
bipolar (Schottky or ECL) bit-slice architectures with their atten-
dant large power drain. In the R-S decoder application , power is
not considered a critical resource, but neither is there a require-
ment for the all-out processing speed of a high-powe,r bipolar design .
By restricting ourselves to the consideration of only 8-bit NMOS
microprocessors, the average power dissipation of our-- CPU is predeter-

mined by available devices.
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2.3.4 Logic Family Compatibility

Most microprocessors offer some sort of TTL compatibility
at input and output pins. Those that do not must be appended with
MOS-TTL level converters . A microprocessor which does offer TTL
compatible pins must be looked at closely. Often a part may be
capable of sourcing several TTL l oads but capable of sinking only
1 TTL load. This common characteristic need not cause any dif-
ficul ties when interfac ing with only MOS chips , but if interface re-
quirenents dictate many TTL chips, then buffers will be necessary to
increase the fan-out. Since the majority of today’s medium-speed
logic is TTL based, TTL-capability is a very desirable hardware
feature .

2.3.5 Packaging

Logic circui ts are widely available in a number of dif-
ferent package styles and types. Certain “standard” packages have

.5 

- evolved as a resul t of the popularity and acceptance of the RTL/
DTL/TTL logic families . Certainly, the most fami liar commercial
packages are the 14 and 16 pin Dual-In-Line (DIP) plastic types
and the military ceramic DIPs and “flat-paks” . Extension of fab-
rication techniques into ISI circui t technology has produced larger
packages (e.g., 18, 20, 22, 24 , 28, 40, 48 and 64 pins) of the same

-
.5 types. Most 8-bit NMOS mi croprocessors have settled into 40 pin

ceramic or plastic DIP packages. Since automatic insertion and
-
j testing equipment has been designed to accommodate this package, it

is economically beneficial to stick wi th this type of packaging.
Although plastic commercial packages are readily availabl e and enjoy 

.5

the lowest cost, ceramic DIPs are best suited for hermeticity and
.5 the other military qualification requirements specified by MIL-STD-883.
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2.3.6 Interrupt Structure

Interrupts are a very important desi gn cons ideration in
an application where real-time response to external events Is re-
quired. The interrupt capability of a mi croprocessor is governed
by its hardware structure and its supporting software . Two ques-
tions must be asked about the microprocessor when considering interrupt

.5 sequenc ing: 1) What happens to the program being executed at the
time of the interrupt, and 2) How can the microprocessor determine
which device is interrupting and what priori ty It has been assigned?
The first question is answered by what actions that occur pri or to
the acknowledgement of an interrupt request. Some provisions must
be made to “freeze ” the processing status of the program being in-
terrupted . This entails saving the point in the main program (Pro-
gram Counter) where execution was interrupted , the contents of the
accumula tor, processor status regi ster , and possibly other important

.5 

on chip register contents. These save-operations may be performed
automatically by the mi croprocessor upon recognition of an inter-
rupt, or may be incl uded as instructions in a software interrupt
routine . Automatic saves realize a savings in interrupt code
but cause “generalized time” penalties by executing at every inter-
rupt, whether ur not they are necessary. The second question re- -

quires indentification of multiple interrupt sources and priority of
those Interrupts. This answer could be obtained by dedicating many
pins of the microprocessor to interrupts ; each pin representing an
individual interrupting device and assigned priority. Al ternatively,
one pin can be dedicated to Interrupts with external circuitry sup-
plying interrupter identi fication and priority . The latter scheme
requires some intelligent support chips , a technique prevalent in
current 8-bit NMOS mi croprocessors. Some third generation chip
families are solv ing the problem by us ing “daisy-chain ” hardware for

identification and priority arbitration . This solution still
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requires some support circuitry Intelligence for daisy-chain enable
.5 control . Regardless of how these two Interrupt questions are an-

.5 swered , the microprocessor must posses the capability of controlling
its interrupt environment. This is most easily. accomplished by a
software interrupt enable/disable instruction. Most microprocessors
offer this “interrupt masking” capability, al though some offer an
additional “non—ma skable” interrupt that w ill always recognize and
set on an external event. Such events as power-loss may require
the immediate movement of cr iti ca l data to nonvolati le memory for
retention and can be unconditionally initiated by such an interrupt.
The (7,3) R-S decoder application requires an interrupt capability .
Th is interrupt is used to serv ice codewords whi ch are rece i ved whi le
decoding -Is in progress on prev iously recei ved codewords , and there-
fore by ‘Itself does not require a complex multi-level interrupt
structure . .5

2.3.7 Direct Memory Access (DMA)

DMA represents a very efficient method to effect high-

speed da.ta~interchange between a microprocessor ’s main memory and
peripheral units . The alternative to DMA requires that some firm-
ware routine read/wr ite eac h data word between main memory and the
peripheral device , an option termed “programed I/O” . DMA requires

that the microprocessor not be working in main memory at the time

the DMA transfer is occurring. This result can be achieved in either

of two ways: I) Disable the processor during .DMA time , or 2) Al low

DMA only during those times that the CPU is not using main memory.

These approaches, termed Cycle Steal ing and Simultaneous DMA, re-
spectively, are both va l id  methods and the impl ementation choice

between them revolves around the microprocessor’s DMA capability,

norma l processing load, and program timing requirements. The

(7,3) R-S decoder appl ication can utilize DMA transfers to load re-

- ceived codewords into main memory simultaneously wi th CPU decoding
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operations . Such operations would increase the decoder throughput
when contrasted with programed I/O.

2.3.8 I/O and Memory Expansion

The ability to adapt a microprocessor-based design to
provide the additional processing required for possible later de-
sign enhancements can be a chief contributor to minimum life-cycle
costs . The main concern in this area is the ability to directly

.5 expand the access ible main memory and the number of I/O channels.
These two expansion possibilities are most infl uenced by the software
provisions of the microprocessor and the available hardware Inter-
face. As discussed in 2.2.2 and 2.2.5, addressing range and modes
directly affect memory and I/O expansion . Additionally, multiplexed
or non-multip lexed microprocessor pin-outs , decoded or non-decoded
control signals , and dri ve capability are the hardware features most
involved in electrical expansion design . An application such as the
R-S decoder might take full advantage of additional memory and/or
I/O ports for further accommodation of longer codes , outboard special
purpose hardware , or additional demodulator functions such as
estimation/detection processing.

2.3.9 Minimum Chip Count

A one-chip microprocessor Is really a misnomer when the
number of additional support chips necessary for operation are con-
sidered . A one-chip CPU packaged in a large DIP will often provide
all the necessary address , data and control lines for easy system
interfacing. On the other hand,a one-chip CPU packaged in a relatively
small DIP package provides these signal s on multiplexed pins and
requi res external packages for demul tiplexing and control . Micro—
processors that require external clock generator/drivers, system
controllers , or other support chips for even a minimum chip
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Implementation obviously require more space, weight, power, and
are inherently less reliable in operation . A true one-chip CPU

.5 

must include a clock generator and all system control logic to
provide all necessary data, address and control lines in a non-mul-
tiplexed fashion. The one-chip microprocessor must not be con-
fused wi th the one-chip microcomputer. The latter is a monolithic
device which includes on-chip program storage (ROM), data register
storage (RAM) , and I/O logic. The monolithic microcomputer is
truly the ultimate in minimum chip system design . The R-S decoder,
intended as part of a larger system, should take advantage of the
benefits realized by minimum chip designs .

2.3.10 Support Chips

The power and flexibility of a microprocessor can be in-
creased by performing complex and/or time consuming processes in
external logic. State-of-the-art LSI is now providing mi croprocessor
support chi ps which , under software control , provide synchronous/
asynchronous I/O operation , counter/timer functions , DMA control ,
floppy disk and magnetic tape control , video generation, A/D/A
convers ion, etc. Microprocessor selection should incl ude consider-
ation of the family of support chips availabl e for each particular
device. Support chips may be required in the original design to
implement the intended appl ication or may be considered as increased
processing potential for later design enhancements. The use of
highly sophisticated support chips to achieve increased system per—
formance is an attractive alternative to increasing a system’s cl ock
speed , adding ROM and RAM , or hav ing to redesign wi th a different
microprocessor.
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3.0 MICROPROCESSOR SELECTiON METHODOLOGY

In the previous section of this report , specific microprocessor
design considerations were analyzed with regard to Implementing the
MDD algori thm. It now becomes necessary to select a microprocessor
that will satisfy the design requirements resulting from that
analysis. The selection process should be as objective as possible.
In this section , an approach to microprocessor sel ection for the
(7,3) Reed-Solomon decoder is presented. Any selection methodology
that assigns relative weights to different eval uation factors can
be immediately suspect , and therefore the unweighted method employed
herein is bel ieved to be a more objective approach.

The subjective pitfalls of figure-of-merit weighting arise
from the fact that some applications i ncl ude “critical factors”
(i.e., design constraints) which requi re emphasizing their re—
lative importance over all other factors under consideration. This
is normally accomplished by ass ign~i-n~g a relati ve merit weighting
figure to each design factor. In such cases great care must be taken
when assigning these “m u l t i p l y i n g ” figures . Easily biased results
can quickl y arise from the inclusion of overinfl ated (multiplied)
evalua tion fac tors depending on how one plays the “numbers game”.

Relative figures of merit for the design factors of the (7,3)
Reed-Solomon decoder application under consideration here have 

~~~
been used ; however, it can be argued that certain design consider-

.5 ations have been implicitly declared critical . Certainly, the ob-
jectives of low-cost, medium speed, flexible components dictated
NMOS 8-bit microprocessors, and the MIL-qualified requirement im-

mediately eliminated most of the potential candidates. Therefore,

these design factors have not been considered further but have
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affected the microprocessor selection process by allowing closer
examination of the three remaining microprocessors .

In the selection methodology presented here, the microprocessors ’
performance in each design factor category has been rated by strict .5

adherence to a few basic evaluation rules (see 3.3) . These rules
have been applied in the context of the considerations of the
design factors as presented in Section 2.0. This microprocessor
selection methodology is applicable to other designs if the eval-
uation rules are appl ied in the context of the Intended application
and can include relative weighting for “critical factors ” if nec-
essary.

In this section the three MIL-qualified microprocessors are
examined, application benchmark programs written for each micro-
processor , and the results of these benchmarks, as well as 17 other
design factors, are evaluated and compared .

3.1 MIL-Qualified Candidates

As discussed in 2.1 .4, the system consideration factor that
elim inated many 8-bit NMOS microprocessor candidates was the avail-
abil ity of MIL-Qualified pieces . Applying the criteria, we are
left with three candidate mi croprocessors: Intel ’s 8080A,
Motorola ’s MC6800, and Z i log ’s Z-80.

3.1.1 The Intel 8080A Microprocessor

The 808OA is a monolithic 8—bit parallel processing unit
(CPU) utilizing silicon gate, depletion load, NMOS technology)~

4
~

As illus trated in Figure 3-1 , the 8O80A’s architecture Includes seven
8-bit programable registers (including one accumulator), a 16-bit
stack pointer, and a 16-bit program counter. Six general purpose

.5 
registers may be addressed individually or in pairs to provide both
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single and doubl e precision operators . The stack pointer points
to an expandable stack which must be implemented in external RAM.
This last-in-fi rst-out stack can be used to store and retrieve
the contents of the accumulator , status flags , program counter ,
or the six general purpose on-chip registers . The sixteen bit
stack pointer controls the addressing of the external stack. In
this manner , the 8O80A can handle virtually unlimi ted subroutine
nesting from multiple-level priority interrupts by rapidly storing

and restoring the processor ’s status . Arithmetic and logic instruc-
tions set or reset four testable flags . A fifth flag provides
decimal arithmetic operations.

Intel ‘s 808OA was the first of the so-called “second
generat ion” 8-bit microprocessors and is a design enhancement of
the old 8008. It is by far the most widely used 8-bit NMO S micro-
processor available today. There has been a lot of software written
for the 8O80A and much design experience gained by its use. None-
theless , the 808OA does exhibit some glaring deficiencies. For
examp le, it is first and foremost really a 3-chip microprocessor,
when considering the necessity of a clock generator chip and a system
controller chip. Additionally , its three power supply voltages are
often a design nuisance. Software-wise, its lack of indexed ad-
dressing can be an impediment to some programing tasks, but its

versatile register - indirect addressing capability finds wide ap-

plication . The 8080A is firmly entrenched in the microprocessor
marketplace with strong support, a myriad of second sources, and
a vast family of very powerful support chips . Third generation

dev ices , while offering vast performance improvements over the 8O80A
are exhibiting software compatibi l ity with this ubiquitous device ,

a strong testimony to its position in the microprocessor field.
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.5 3.1 .2 The Motorola 1C6800 Microprocessor

The MC6800 is a monolithic 8-bit parallel central pro-
cessing unit (CPU) fabricated in silicon gate, depletion load,
NFIOS technology)

’15
~ As illustrated in Figure 3-2, the 6800’s archl-

.5 tecture includes two 8-bit accumulators, a 1 6-bit stack pointer,
16-bit program counter, a 16-bit index register, and an 8-bit con-
dition code register. The stack pointer is used to reference a .5 

.5

stack stored in external (off-chip) read/write memory. The 6800
features seven addressing modes, inclu ding indexed addressing, and
supports 72 instructions utilizing these modes. There are two
hardware and one software initiated vectored interrupts, all of
which automatical ly cause storage of the Internal CPU ’s regi sters
on the external stack for efficient interrupt handling . There is
also a vectored restart function for power-up and system initiali-
zation. The 6800 requires only one +5 volt power supply and no ex-
ternal TTL devices for bus Inter-face. The condition code register
maintains five status bits and a master interrupt control bit. 

.5

The MC6800 is currently the second most widely used micro-
processor. Originally designed as a second generation competitive
device at the same time as the 8080, its design philosophy is evi-
dent in Its unique architectural features. For instance, its
strict adherence to the edict of no on-chip general purpose (scratch-
pad) registers is compensated for by the inclusion of a fast two-
byte base page, direct addressing scheme. This allows the first
256 bytes of memory to be quickly accessed for data manipulation .
The inclusion of two main accumulators facilitates fast “co-routine”

handl ing and other interrupt driven task servicing. Its relative
branch instructions are the same as those of the Digital PDP-ll mini—
computer, and provide a very sophisticated decision making capability.
On the negative side, however, the 6800 does pose some annoying
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problems . For example , there is no direct path from the two ac-
cumulators to the index register. This requires storing a newly

computed index Into two 8-bit bytes of external memory and, then
loading the 16-bit value into the index register. Additionally,
al though the 6800 offers many fine addressing modes, not all of
these modes are valid for all Instructions. This poses many pro-

- - granining exceptions that must be kept In mind . It can be just- 
.5

iflably argued that the 6800 is a two-chip microprocessor, as It
requires a clock generator chip to support the CPU. Be this as it
mey, the 6800 family design still allows minimum chip implementation
in many applications through a small but sophisticated selection of

.5 

support chips and accessibility to most of the on-chip control signals.

3.1.3 The Zi log Z-80 Microprocessor

The Z-80 is a monolithic 8-bi t parallel central processing
unit (CPU) fabricated in N-channel silicon gate, depletion load
techno1ogy)~

61 As shown In Figure 3-3 , the Z—80 ’ s architecture in- .5 .5

cludes 18 eight-bit registers : 12 general purpose registers , two

acc umulators , two status fl ag registers , one interrupt vector register
and one memory refresh counter register. Also illustrated are the
four 16-bit registers : two index registers , a stack pointer register
and a program counter register. The 12 general purpose 8-bit
registers may be utilized to form 6 unique 16-bit register combina-
tions for double byte operations. The Z-80’s instruct ions allow 

.5

4- , 8- , and 16-bit operations and provide powerful addressing
techniques such as indexed (via two index registers), bi t , and

relative addressing . Three extremely versatile modes of Interrupt

response are provided plus a non-maskable vectored interrupt cap-

ability. The Z-80 mi croprocessor requires only a single +5 volt
supply and contains on—chip clock driving circuitry utilizing a

44 
.5



— — — - -  U)

U)
.5 U)

.5 U, _ _ _  -
0 4 U)

u m o x

~~ /
5- \~~~~~~~~~ _ _ _ _ _ _ _  

_ _ _

— C J W .J
_ _ _ _ ~~~~~ ,_ A._ u

z — — 0 0 .
.5 4

. — I-
U U ) 0~~~ 

- -  U
U IaJ4 I-

I
C.)

4
U)

0
0 —  —
4 _ _ _ _ _ _  U,

z ~~~ o—  in

.5 .
- . 

-

~~~~~ _ _ _

.5 

ud
.5
’ [ S9v~%~ S9 v ~~4

I Sfl iV.LS ~ Sf lLV LS ~ I

1
~

o
I
p I

.5 . 

.5 

- 

.5 

_ _ _ _  

_ _ _  

4
.5 ’ .5 ~~~~~~~~~~~~~~~~~ 

~~~~~~~~ ~~~~~~~~~~~~~~~ ~~~~

.-~~-— —_ -_----- --— ‘__ --.5 

-.5 —-—---.- —.5- _-%  
-‘.5------—

.5. ’— —-- —.5- .5- —.5 —---.5— —.5~~~~~~~ —.5- ~~a..______ _ --.5 -~~~-~~~~~~~~~~~~~ ~~~~~ .5



simple external frequency controlling element such as a crystal or
R-C circuit. Furthermore , a special feature~offered only by the .5

Z-80 is its ability to automatically refresh dynamic RAMs.

Z i log ’s Z-80 Is touted as a “third generation” 8-bit
microprocessor and indeed a subset of its outstanding performance
features contains all of the features of the second generation
8080A and many features of the 6800. Its abundance of on-chip
general purpose registers and extensive instruction set make its
“number—crunching” and data manipulation operations very efficient.
Such capabilities ~s bloc k I/O transfers and bl ock memory moves ,
bit manipulation and testing, dual indexing, and automatic refresh
for dynamic memories are unique in the microprocessor world. Unique 

.5

too , is its fami ly of support chips , offeri ng “daisy-chain” priori ty

interrupts , prograninable interrupts dependent on peripheral status ’
conditions and automatic interrupt vectoring. While the Z-80 is
software compatible wi th the 8080A, the sophistication of its ad-
ditional instructi ons is diminished somewhat by the fact that most
of these instructions are multi-byte. Some instructions require
four bytes . This results in slightly slower execution times than
mi ght be expected , but is somewhat compensated for by the faster
basic cycle time of the device . As yet the Z-80 has not enjoyed
wide acceptance. This is due in part to its infancy in the micro-
processor market, limited production , and the sol id entrenchment

.5 

of the 8080A and 6800. Only the -future will tell if the Z-80 will
.5 become a dominan t figure in 8-bit NMOS microprocessors, or If per-

haps its performance advantages will be overshadowed by emerging
enhancements of its chief competitors .

3.2 Benchmarklng

One of the most important -factors in the microprocessor selection
process is benchmarking. Benchmark programs can be coninon utility
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routines for general microprocessor comparison or specific program
- - “kernel s” or key routines critical to the task at hand. This paper

adheres to the latter approach. Great care must be exercised when
preparing benchmark programs . The same programmer should wri te the
programs for all microprocessors under considerati on, thus insur ing

the same level of coding expertise applied to each program. To
further insure a fair comparison , the prograimner should attempt to
take advantage of the unique characteristics of each CPU. It is
entirely possible that this will result in n—different programming
approaches when wri ting n benchmark programs; no two approaches being
exactly the same , and each fully exploiting st rong points of the
CPU to be utilized in the application. The results of such a bench-
mark program exercise should not be viewed as conclusive)~

7
~ Bench-

markIng is not an end in itself; rather it is merely another tool
to evaluate microprocessor performance under a specific, limi ted
set of clrcums tances

.5 
3.2.1 The Benchmark Program

A unique processing requirement for the (7 ,3) Reed-
Solomon decoder appl ication must be identifi ed to serve as a “kernel”
for benchmark programing. Recalling that decoder throughput is a
very Important design specifi cation , the chosen kernel should re-
present the critical operation necessary to optimi ze this parameter.
The MDD algori thm basically requires time consuming codeword table
search and compare operations. These operations are normal utility
routines for many types of data processors , including microprocessors .
The unique characteristi c of this procedure , however , is the fact

that it is not enough to know that two codewords do not compare
exactly, but we must have a measure of how badly they compare,
i.e., the exact number of symbol discrepancies . A suitable choice

— for the benchmark program, therefore , is the “decoding kernel” ,
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i.e., the code table search and compare operation . Figure 3-4
is a flowchart of the functions included in this routine. Note
that this program incl udes only the compare operation for one of the
possible 512 valid (7,3) R-S codewords. The initialization assump-
tions inherent in this program are: 1) The table entry point
using a systematic code (see A1.2.2) has already been calculated
and loaded into the appropriate register(s), 2) The received code-
word symbols have been loaded into the appropriate regi sters , and
3) The decision parameters for early table exit, table “ wrap-
around” addressing, and minimum distance determination have been
previously calculated . The following paragraphs detail the three
benchmark programs , specifi c initialization assumptions , regi ster
ass ignments , execution time , and program storage results.

3.2.2 Benchmark Program Analysis

In preparing the benchmark programs for the three can-
didate microprocessors , the prime objective was minimum execution

time . W hi le this objective does tend to minimize program storage,
that result was definitely not vigorously pursued. Were minimum
program storage the prime objective, a very tight program loop could
have been written for each mi croprocessor. The resulting execution
times would demonstrate a dramatic increase due to the overhead in-
curred by the conditional loop Instructions . Indeed , one lesson
learned early in the benchmarking effort was to employ “In-line”
(no subroutine calls , or loops) code to achieve minimum execution
time . Being fully cognizant of the programing strengths of each
microprocessor, every effort was made to employ those strengths

.5 
to speed execution time. If this philosophy necessitated a trade-
off in memory for speed, then so be it , for it has long been a basic
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.5 PROGRAM: .5

BENcHMARK

FETCH THE ADDRESSE D SYMBOL
OF TH E CURRENT CODEWORD

POINTED TO IN THE CODETABLE

FETCH THE A DDRESSED SYMBOL
OF THE RECEIVED CODEWORD

COMPARE THE TWO SYMBOLS

.5 ARE

YES

A DDRESS THE NEXT
SYMBOL OF THE

T E R E C E  WED
CODEWORD

YES

c~o
F igure 34: BENCHMARK PROGRAM FLC~1CHART
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premise of the Low Cost Electronics project that as semiconductor
memory pieces become denser and lower in per-bit cost, a memory vs.
performance tradeoff is beneficial .

3.2.2.1 8080A Program

The benchmark program (Table I) written for the 8080A was
structured to take advantage of the CPU ’s fast register-to-register
operations and quick fetch times . The~fastest manner in which 8080A
operands can be fetched for a compare operation is via a register-
to-register move and a stack “POP”. Since the 8080A has 6 general
purpose registers, five of these were ass igned rece i ved codeword symbol
holding responsibilities and the sixth register was used to record the

total number of symbol discrepancies found. The remaining two received

code symbols are stored in two external memory locations call LOAD
and LOAD + 1. Their load into the H&L register pair is the only

anomaly lfl the program. Note that the overloaded symbol s 3 and 4
in register pair H and L must be available in external memory for
reload before the next codeword comparison takes place. This op-

eration could be included in the benchmark program, but would only

serve to further degrade the already poor execution times. The as-
signment of one 3-bit symbol per 8-bit byte Is an example of the

.5 trade-off between execution time and memory. Indeed, other 808OA 
.5

benchmark programs were written that utilized “packed-words ” ,
i.e., multiple symbol s per byte. This saved register storage space
and reduced the number of compare (XOR) operations, but because of
the nonavailability of a non-destructive mask instruction , two
destructi ve mask (AND) operations and a register save and recall
are necessary to determine the results of the multi —symbol compares.
This resulted in an execution time about 30% greater than that of
the benchmark program shown . The POP instruction requires only 10

50

- .5- I
—.5-- .5- - -

__________________  
.5 -~~ 

- _____

_ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _  .5 ~~~~~~~~~~~~~~~~~~~~~~~ ~~~~~~~~~~~~~~~~~~~~~ -~~~~~~~~~~



TABLE I .5

.5 8080A BENCHMARK PROGRAM

Initial Conditions: -

Register B Symbol Discrepancy Counting Register
Register C Symbol 0 of the Received Codeword
Register D Symbol 1 of the Received Codeword
Register E = Symbol 2 of the Received Codeword
Register H Symbol 3 of the Received Codeword
Register L = Symbol 3 of the Received Codeword

CODE = Memory Location Containing Symbol 5 of the Received Codeword
CODE + 1 = Memory Location Containing Symbol 6 of the Received Codeword

- Received codeword symbol s 3 and 4 are redundantly stored in external memory
- The stack poiner has been initialized to point to symbol #0 of

the valid stable codeword calculated from the table entry point routine
- Register B is clear (i.e., equal to zero)

PROGRAM :
Number of Number of Pro-
Machine gram Storage
States Bytes Instruction Conwnents

10 1 POP PSW fetch sym. #0 of the table codeword
4 1 XRA C compare with sym. #0 of rec’d codeword

.5 
- 10 3 JZ 1 are the symbols the same?

5 1 INR B no , record the discrepancy
10 1 1 POP PSW.5 4 1 XRA D SAME FOR SYMBOL #1
10 3 ~J Z 2

5 1 INR B
10 1 2 POP PSW

4 1 XRA E SAME FOR SYMB OL #2
10 3 J Z 3

5 1 INR B
10 1 3 POP PSW

4 1 XRA E SAME FOR SYM BOL #3
10 3 J Z 4.5 
5 1 INR B
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TABLE I (con ’t)

Number of Number of Pro-
• Machine gram Storage

States Bytes Instruction Coninents

10 1 4 POP PSW
4 1 XRA L SAME FOR SYMBOL #4.5 10 3 J Z 5
5 1 INR B

16 3 5 LHLD CODE Fetch symbols 5 & 6 of received code-
word into on-chip registers L & H

10 1 POP PSW
4 1 XRA L

10 3 JZ 6 SAME FOR SYMBOL #5
5 1 INR B

10 1 6 P OP PSW
4 1 XR A H

10 3 JZ DONE SAME FOR SYMBOL #6
5 1 INR B

Execution Time T8080A = 2l9(.5) = 109.5 microseconds

Number of program Bytes = 45 .5
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machine states to fetch an operand from external memory to the ac-
cumulator. This is a faster fetch method than the highly touted
8080A register-indirect fetch which requires 7 states pl us 5 more
to increment the register pair pointer for the next location. The
disadvantage of utilizing the POP Instruction which does not surface
in the benchmark program, is the “housekeeping chore” of reinitializing
the stack pointer for other segments of the complete decoder program.
The second symbol of the compare operation is fetched by the XOR
instruction in a fast register-to-register move (i.e., from the
holding registers B through I to a temporary ALU operand register).
This fetch and compare operation executes in the minimum 8080A
instruction time, 4 machine states. A conditional jump instruction
checks to see if the results of the XOR operation were zero (indi-
cating identical symbols) or non-zero (indicating a symbol discrepancy).
If there has been a symbol discrepancy , the B register is incremented
(taking 5 machine state times) yiel ding a running total of how
closely the two codewords compare. tt is an idiosyncracy of the
8080A that it cannot perform a s imp le increment internal register
operation in the minimum instruction execution time , unlike the
6800 and the Z-80. These operations continue repetitively until all

the 8080A on-chip registers have been accessed. Because of the
l imited on-chip register storage, the last two symbols must be
loaded over the two symbols in the H and I registers before the program
can continue. As In all three benchmarks, there are no subroutine
calls or repetitive loop instructions since the overhead time incurred
in their execution would seriously increase program execution time.
The results of the 8080A benchmark program show an execution time of
109.5 microseconds for a “kernel” program of 45 bytes In length.
Remember, however , that before this kernel is executed for the

• next codeword in the table , the H & L registers must be reloaded
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with received syn~o1s 3 and 4 and the B register cleared in ad-
di tion to the coninon initialization assumptions of 3.2.1.

3.2.2.2 6800 Program

The benchmark program (Table II) written for the
Motorola 6800 microprocessor takes advantage of two unique 6800
softwa re Instructions , and Indexed addressing. The bit test in-
struction is an extremely powerful means of non-destructively
testing the status of any bit pattern in an 8-bit word. It is
ideally suited to determining the zero or non-zero results of a
mul ti-symbol compare (XOR) operation without having to save, mask
(AND) , and re-fetch the accumulator contents. This allows “multi -
symbol” packing of bytes and a decrease in the execution time of the
compare operation. The “load direct” instruction is a fast two
byte fetch instruction provided by the 6800 so that the lowest
256 bytes of memory may be treated as general purpose registers
since the architecture of the 6800 does not provide any on-chip
general purpose registers. This instruction facilitates the storage
of the received codeword in RAM and still allows fast access to its
symbol s for the compare operations. Indexed addressing in conjunction
with the XOR instruction is used to fetch a table codeword for the
compare operation. Consider the program ’s three increment index
register (INX) instructions. The observant prograniner will recog-

.5 

nlze that this function could have been incl uded more efficiently
in the displacement byte of the three XOR indexed instructions re-
ducing program storage and decreasing execution time. While this is
certainly true, the reason for including these instructions Is for - - -~~~ .5

fairness of comparison. This is because the other two benchmark
programs use an updated stack pointer, which at the end of every
codeword compare operation, inmiediately points to the next code-
word In the table. In the 6800 program, were the INX instructions

- 

54

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~~~~~~~ 
‘~~~~~ ‘~~~~~~~~~~~~~~~~~~~~~ —- -



--. ~~~~~~~~~~~~~~~~ 
— —

r

.5 

TABLE II

6800 BENCHMARK PROGRAM

INITIAL CONDITION :

Memory Location CO = symbol 0 1’ 1 of the received codeword
Memory Location Cl = symbol 2 & 3 of the received codeword
Memory Location C2 = symbol 4 & 5 of the received codeword
Memory Location C3 = symbol 6 of the received codeword

(All memory addressed ~ 255 in RAN)

- Accumulator B Symbol Discrepancy Counting Register

- Accumulator B is clear (i.e., equal to - .5

- The index register contains the address of the first byte of a
table codeword which was chosen as the first comparison word by
a table entry point subroutine.

PROGRAM :

Number of Number of Program
Machine Cycles Storage Bytes INSTRUCTION CO~*1ENTS

3 2 LDAA CO fetch symbols 0
j & 1 of rec’d codeword

5 2 EORA X compare with symbols
0 & 1 of table codeword;

2 2 BITA #OFH mask out symbol 1 result;
.5 

4 2 BEQ NXT are 0 symbols equal?
2 1 INCB no , record discrepancy
2 2 NXT BITA #FOH mask out symbol 0 result
4 2 BEQ NXTI are 1 symbols equal?
2 1 INCB no, record discrepancy
3 2 NXT1 LDAA Cl fetch 2 & 3 of rec~d codeword
4 1 INX point to next byte In codetable
5 2 EORA X

.5 2 2 BITA #OFH

-
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TABLE II  (CON ’T)

Number of Number of Program
Machine Cycles Storage Bytes INSTRUCTION CO*IENTS

.5 4 2 BEQ NXT2 .
.5 2 1 INCB (Same for remaining symbols)

2 2 NXT2 BITA #FØ4 .

4 2 BEQ NXT3 .

2 1 INCB

5 2 EROA X
2 2 BITA #OFH .

4 2 BEZ NXTR .

2 1 INCB .

2 2 ?IXT4 BITA
4 2 BEQ NXT5

2 1 INCB .

3 2 NXT 5 LDAA C3 .

4 1 INX
5 2 EORA X
4 2 BEQ DONE
2 1 INCB

52 DONE

Execution time T6800 
= 98 microseconds

Number of program bytes = 52
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not incl uded in the benchmark,they would still have to be executed
in preparation for the next codeword compare. Thus, their exclusion
would present an unfair advantage to the 6800 program. Another
instruction set advantage which the 6800 offers over the other two
microprocessors is its set of conditional branch instructions . Al-
though not fully utilized in the benchmar,k program, these instruc-
tions prove invaluable in the decision making process that follows
every codeword compare operation . The 6800’s second accumulator
can be utilized as an on-chip register. In this program It serves
as the symbol discrepancy counting register allowing Increments in
2 machine cycles, the minimum instruct ion execu tion time . The
results of the 6800 benchmark program show an execution time of
98 mi croseconds for a “kernel ” program of 52 bytes.

3.2.2.3 Z-80 Program

The Z-80 benchmark program (Table III) is analagous to
the 8O80A program. Indeed, since the Z-80 is software compatible
with the 8080A, it could execute the same program. The only ad-
vantage in doing this would be the decrease in execution time re-
sulting from the Z-80’s basic 400 ns machine state time vs. the
8080A’s 500 ns. To further decrease the execution time of the
program we can take advantage of two Z-80 characteristics. Since
the Z-80 has twice as many scratch-pad registers as the 8080A , all
of the received codeword symbols can be stored on-chip and nianip-
ulated with fast register-to-register moves. Also , the increment
register instruction in the Z-80 is an instruction which executes
in the minimum instruction execution time (4 states) as opposed to 5

In the 8080A. The disadvantage of storing all symbols on-chip Is that
the Z—80 technique requires the Inclusion of an “EXCHANGE” register
instruction . Furthermore, once the back switching has occurred, the
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TABLE I I I

Z-80 BENCHMARK PROGRAM

- IN ITIA L COND I TIONS : -

Register B = symbol 0 of the received codeword
Register C = symbol 1 of the received codeword
Register D = symbol 2 of the received codeword
Register E = symbol 3 of the received codeword
Register H = symbol 4 of the received codeword
Register B’ = symbol 5 of the received codeword
Register C’ = symbol 6 of the received codeword
Register L symbol Discrepancy Counting Register
Register L’ = symbol Discrepancy Counting Register

Register L & D’ are clear (i.e., equal to 00H~
The stack pointer has been initialized to point to symbol #0 of a
table codeword which was chosen as the first comparison word by a
table entry point subroutine.

PROGRAM :

Number of Machine Number of Program INSTRUCTION
States Storage Bytes INSTRUCTION COMMENTS

10 1 POP AF fetch symbol #0 of table
codeword

4 1 XOR B compare with symbol #0
of rece ived codeword

10 3 JZ NXT are symbol s the same?
.4 1 INC L No , record discrepancy
10 3 NXT POP AF
4 1 XOR C
10 3 JZ NXT1 SAME FOR SYMBOL #1

4 1 INC L
10 1 NXT 1 POP AF
4 1 XOR D

10 3 JZ NXT2 SAME FOR SYMBOL #2
4 1 INCL
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TABLE III (CON ’T )

.5 Number of Machine Number of Program
States Storage Bytes 

— 
INSTRUCTION COPVIENTS

10 1 NXT 2 POP AF
4 1 XOR E

.5 10 3 JZ NXT3 SAME FOR SYMBOL #3
4 1 INC L

10 1 POP AF
4 1 XOR H SAME FOR SYMBOL #4

10 3 JX NX T4

4 1 INC L
4 1 NXT 4 EXX Switch register banks

10 1 POP AF
4 1 XOR B’ SAME FOR SYMBOL #5

10 3 JX NST5 Note : discrepancy reg-
ister is now 0’

4 1 INC O’
10 3 NXT 5 POP AF
4 1 XOR C’ SAME FOR SYMBOL #6
10 3 JZ NXT6

- : 4 1 INC D’-
4 1 NXT 6 IDA D’ combine both dis-

crepancy counts
4 1 EX X
4 1 ADD L

212

Total Program execution time Tz_80 = 212(.4) = 84.8 mIcroseconds

.5 Total number of program storage bytes = 46
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L register, which was used to accumulate the total number of symbol .5

discrepancies found, is not di rectly addressable. So a new register
in the other bank must be utilized to record the number of symbol
discrepancies for the last two symbols. Again , for fai rness of com-
parison, instructions must be included In the benchmark program to
add these two registers to arrive at a total symbol discrepancy number.
It should be noted that although Z-80 architecture offers two sep-
arate Index registers, the fetch Instructions utilizing indexed ad-
dressing are much slower executing than the chosen stack pops and
register—register moves. Also , it is highly regrettable for this
application at least, that the Z-80 does not provide any instruc-
tion equivalent to the 6800 ’s bit test. Were such a non-destructive
mask and check instruction available , a 16—bit subtract (i.e., a 4

symbol compare) could be utilized for multi -symbol comparison (as
suggested In 2.2.1) and a dramatic savings in execution time , and
program storage would result. The bit instructions of the Z-8Q
although highly capable for individual bit sensing and control ,

do not provide a mult i-bit,masking capability like the 6800’s Bit
Test , and are not directly applicable to multi -bit symbol operations.
The results of the Z-80 benchmark program show an execution time
of 84.8 microseconds for a “kernel” program of 46 bytes.

3.3 Key Factors Comparison

Eighteen key factors from the design requirements analysis of
Section 2.0 have been selected for their applicability to the (7,3)
R-S decoder appl ication. Table IV is a microprocessor comparison
table which shows the results of a comparison study between the
three candidate microprocessors based on these 18 key factors.

The number assigned under each microprocessor for every factor Is
an Indicator of the microprocessors’ ability to satisfy a particular
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TABLE IV

MICROPROCESSOR COMPARISON

INTEL MOTOROLA ZILOG
FACTORS 8080A 6800 Z-80

SYSTEM
1. Software Support 3 3 3
2. Documentation 3 3 2
3. Application Notes 2 3 1
4. Design Aids 2 2 2
5. Second Source 3 2 1
6. Availability 2 2 2 

.5

7. MIL-Qual ification 2 2 1

8. Benchmark 1 2 3

.5 SOFTWARE
2 9. Word Size 0 0 1

10. Addressing 1 2 3

11. Internal Registers 2 0 3

12. Instruction Set 1 2 3

HARDWARE
.5 13. Clock 1 1 2

14. Chip Voltages 0 2 2 
.5

15. Interrupts 1 2 3
.5 16. I/O & Memory Expansion 2 2 3

17. Minimum Chip Count 0 1 2
18. Support Chips 3 2 ,j

TOTALS 29 33 38

.5 
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design requirement. The numbers range from 0 to 3 and have been

assigned according to the following rules: .5

0 = the microprocessor in no way satisfied
the design factor as discussed in
Section 2.0

1 = the microprocessor only partially sat-
.5 isfied the design factor as discussed

in Section 2.0

2 = the microprocessor completely satisfied
the design factor as discussed in Section
2.0

I
3 = the microprocessor’s capability exceeds

that requi red by the design factor as
.5 discussed in Section 2.0.

The rationale for the specifi c assignments of these numbers
.5 is detailed in the following paragraphs .

3.3.1 System Factors Rationale

Software Support - All three microprocessors are sup-
ported by extensive software products. Each manufacturer offers
and supports a broad line of system programs IncludIng language
translators for higher-level languages, debug packages with trace

routines, and in-circui t emulation capability.

2 Documentati on - Motorola and Intel are consi dered to

have excellent microprocessor documentation . Both products are

supported by plentiful , well-organized design manuals. Zilog

documentation is also quite satisfactory, but being a more recent

product line has not yet enjoyed the benefit of a myriad of review
aid revision cycles.
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Appl ication Notes- Motorola with its mammoth application
manual has mo’e than initiated and educated Its user community.
The manual is an excellent system introduction, a detailed design
document, and ‘inclu des many specific appl ication examples with typcial
sample programs. Intel application notes were judged very satis-
factory especially when bolstered by nu merous noncompany—related
manuals and application articles on the evolutionary 8008-8080A.
Z i log Corporation’s appl ication notes are few and specific. Instead,

Zilog is counting on converting 8080A and 6800 users and concentrates
on demonstrating how the Z-80 can better perform applications well-
known to the other two mi croprocessors. .5

Design Aids - All three microprocessor manufacturers
offer a rather complete line of prototype boards, chip sets , and
sophisticated development systems. Even where deficiencies in a
design aid line may exist, they are quickly corrected when considering
the wealth of design aid products marketed by non-affiliated com-
pan ies.

Second Source - Intel is judged to be in the strongest
second source position having its widely accepted 8080A supported
by Advanced Micro Dev ices , Texas Instruments , Nippon Electric Com-
pany, National Semiconductor, Hitachi and Siemens. Motorola enjoys
sizeable second sourcing by American Microsystems International ,
Fai rchi ld, Hi tachi and Sescosem/Thomson-CSF. Zilog is in the weakest
second source position with Mostek currently supplying the majority
of available pieces.

Availability — Pieces are readily available factory direct
or through distribution for all the microprocessors.

Mu —Qual ification - As discussed In 3.1.4 , Intel and
Motorola parts are currently being Air Force specified under
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MIL-M-38510 while Zilog only offers parts which it will guarantee
to MIL-STD-883B but have not been ‘DOD specified.

Benchmark Program - As detailed in Section 3.2.2, the
benchmark results must be analyzed very careful ly. Al though all
these microprocessors can perform the decoding function , the Z-8O
execution time is faster than the 6800 or 808OA, wh i le the number
of program storage (bytes) required is about the same.

3.3.2 Software Factors Rationale

Word Size - As discussed in 2.2.1, the optimum CPU word
size for the R-S decoder should be 16 bits . However, 16-bit NMOS
microprocessors are relatively new to the market and few have been
MIL-qual ified as yet. The 8-bit NMO S microprocessor, however, is
the most prol ific member of the microprocessor family. Consequently,
it is enjoying large vol ume production and attendant price decreases .
Design enhancements, mul tiple sourcing, and military qualifi cation
are all recent characteristics of this ubiquitous piece, and
further justify its use in the decoder application.

Since none of the microprocessors under cons ideration are
16-bit CPU’ s, they do not satisfy the word size requirement. The
Z-8O , however, does possess some 16-bit load and ari thmetic instruc-
tions and therefore minimally approaches 16-bit operational capa-
bility .

Addressing - As illustrated in Table V , the Z-80 offers
the most sophisticated addressing modes, particularly bit addressing,
13 registers for indirect addressing,and two registers for indexed

.5 addressing. The 6800 also offers indexed addressing, but through
only 1 register and no indirect capability . Its two byte “direct”

form , however , is a particularly quick fetching mechanism. The
8080A offers the least powerful addressing capability of this group.
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Internal Registers - The Z-80 exceeds this design
desirable by providing 14 internal registers, while the 8080A has
6 and the 6800 none. (Note: These are in addition to accumulator.
processor status word, stack pointer , program counter or index -

j

registers).

4 Instruction Set - As noted in the benchmark program analysis
(see Section 3.2), the absence of one instruction In the Z-80 and
the incl usion of that instructi on in the 6800 made a tremendous dif- .5

ference in the suitability (and software approach) of the CPU to the
“decoding kernel ” benchmark routine. Nevertheless, cons idering the
entire application program requirements , the Z-80 instruction set
was judged more powerful than the 6800’s. The 8080A’s instruction
set, being a subset of the Z-80’s, is less powerful , and although
the 8080A includes on-chip registers, Its instruction set was
judged not as powerful as that of the 6800 for this particular
application .

3.3.3 Hardware Factors Rationale

Clock - The 8080A and 6800 mi croprocessors both require
mul ti-phase external clock generator/drivers. The Z-80 possesses
on-chip generator/driver circuitry and only requires a crystal.
frequency determining R-C circuit, or TTL level, sin gle-phase~ clock
signal. The clock period of the standard Z-80 is faster than the
other two standard parts .

Chip Voltages - The 8080A requires three different vol-
tages (+5 and 12 volts), while the Z-80 and 6800 CPU ’s requi re

only a +5 vol t supply.

Interrupts - The 8080A provides limi ted organic interrupt
handling capability , requiring complex external support for inter-
rupt arbitration, Identification , and vectoring. The 6800 provides
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two hardware (maskable and non-maskable), and one softwa re interrupts
(al l vectored) which can be modified with external logic for ad-
ditional capability. The Z-80 provides 3 distinct Interrupt modes

.5 

(under software control) incl uding the 8080A scheme, the 6800

.5 
maskable and non-maskable capability, and its own special vectored
scheme. Additionally, the Z-80 structure allows “daisy-chaining ”
the interrupts of peripheral devices for simple arbitration, iden-
tification and prioritizing .

I/O and Memory Expansion - All three microprocessors of-
fer adequate I/O memory expansion. The 6800, exhibiting “memory-
mapped” I/O, has inherently more I/O expansion capability than the
programmed I/O of the Z-80 or 8080A. However, these two CP(Ps can
be modified to provide memory mapped I/O by the inclusion of a few
simple external gates. The Z-80 greatly facilitates the use of large
external memory by providing automatic refresh capability for dynamic
memory chips . -

Minimum Chip Count - The 8080A is in reality a three chip
microprocessor requiring an external system controller - chip and
clock generator/driver chip in addi tion to the CPU. The 6800
always requires an external multi-phase clock generator/driver
chip or equivalent discrete circuitry. The Z-80 only requires one
or two external passive components for CPU operation. All three
microprocessors may or may not require buffers and I/O chips in
addition to program storage ROM for minimum chip -systems.

— Support Chips - Intel ’s 8080A probably has the most cap-
able selection of support chips availabl e to increase its performance
capability, followed closely by Motorola’s M6800 family. Zilog l s
Z—80 being a relatively new entry in the field has an adequate but
not extensive support chi p family. This comparison factor can be
quickly voided when allowances are made for utilizing support chips

- 
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.5 designed for one processor family In a design incorporating a di f-

ferent microprocessor. The industry is currently beginning to

supply general purpose support chips (AID/A, I/O controller, etc.)

which may be interfaced with all of the popular microprocessors.
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4.0 CONCLUSIONS

The results of the benchmark programs indicate that the Zilog

Z-80 mi croprocessor is the best hardware implementation choice for the
“ (7 ,3) R-S decoder. However, on closer examination, the resul ts are
not clearly Indicative . Table VI is a summary of the benchmark pro-
gram results. Since the main objective of the design is to maximi ze
throughput, execution tIme must be kept to a minimum. The Z-80’s
84.8 microseconds was the fastest running routine, being 13.5% faster
than the 6800 program. However, when it is considered that the Z-80’s
clock cycle of 400 ns is 20% faster than the 500 ns clock cycle of
the 6800, the 6800 program Is actually more efficient. Further proof
of this fact is evidenced by the number of storage bytes required for
the codetable. The Z-80’s 3574 bytes is over twice the codetable
storage requi red by the 6800 program, while the program storages are
within 6 bytes, I.e., 13% of each other. Indeed , both of these re-
sults Illustrate the advantages gained from the efficiency of the
non-destructive mask operations provided by the 6800 instruction

.5

- 
set as discussed in 2.2.4.

.5 
As shown in Table IV, the Z-80’s comparative fac tor total of 38

Is 5 points better or 15% higher than that of the 6800 and 31% higher
than the cumulative rating of the 8080A. It is interesting to look
at the results of Table IV in a slightly different manner. Grouping
the 18 comparative factors into the three major categories of System,

Software , and Hardware, and subtotalling each , resul ts in a compar i son
structured as shown in Table VII. As this table illustrates , the

Z-80 scores quite poorly wi th respect to system factors, Is clearly
super ior in softwa re ratings and appears only marginally better in
the hardware comparison. Al though such features as on-chip registers

and sophisticated addressing and Instructions are provided by the
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TABLE V I

(7 , 3) R-S Decoder Benchmark Program Results

8080A 6800 Z-80

EXECUTION TIM E 109.5 98 84.8
(microseconds )

PROGRAM SIZE 45 52 46
(bytes)

CODETABLE STORAGE 1536 3574
(bytes)
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TABLE V II

MICROPROCESSOR COMPARISON SUMMARY

INTEL MOTOROLA ZILOG
8O80A 6800 Z-80

SYSTEM FACTORS 18 19 15 .5

SOFNARE FACTORS 4 4 10

HARDWARE FACTORS 7 10 13

TOTALS 29 33 38
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Z-80, they are not all used In the benchmark routine and consequently
do not produce the vastly superior performance that Table IV might .5

lead one to believe .

It must be concluded , based on the benchmark program results
and the table of comparison factors, that the Z-80 microprocessor is

the best candidate for the decoder when speed of execution Is
emphasized. However, It is also true that the speed advantage is not
as great as would be expected from the Z-80’s faster cloc k speed
alone, and therefore must be attributed to less efficient coding
(i.e., instruction set suitability). This is further evidenced by
the much larger codetable storage requirements of the Z-8O program
over that of the 6800.

It must also be noted that the comparative resul ts of Tables IV
through VII are extremely time-dependent. With the rapid evolution
of new and Improved microprocessors, other candidates might be
considered. Indeed , CPU ’s which are design enhancements of the con-
sidered devices and which correct many of the deficiencies pointed
out in Section 3.0 such as the 6801, 6802, 6809, 8085, 8748, Z-8000,
MC-68000, 8086, etc., are very promising alternati ves. However, at
the time of this work and because of considerable in—house design

experience and the availability of support software and demonstration/
debug hardware for the Motorola MC6800 microprocessor , It was decided
to implement the (7 ,3) R-S decoder us i ng that device. The smal l
speed advantage offered by a standard Z-80 microprocessor-based

.5 

decoder was deemed not significant enough to warrant the additional
hardware effort necessary to implement that device. The detailed
design test and evaluation of the 6800-based (7,3) Reed-Solomon
decoder is described in Volume II of this report.
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APPENDIX

FUNDAMENTALS OF ERROR CORRECTION CODING

Al.O Histo,~y~
In 1948, Claude Shannon published his now famous discrete

noisy channel coding theoremJ~
1 This theorem states that for any

rate R less than the channel capacity C, and for any c > 0 there
exists for all suitably large N, a code of rate R = k/N for which
the probability of a decoding error [P(e)J is less than c when a
maximum-l ikel ihood decoder is used. This event started the academic
community on a search for the promised codes. Unfortunately,
Shannon ’s work did not explicitly reveal how such codes could be
obta ined, it only proved their existence. Consequently, the field
of error correction coding as it exists today has taken many diverse
paths. Basically, however, code development has evolved two types
of codes. Bloc k codes treat message sequences independently,
associating a N-tuple block of channel symbols wi th each possible

k-tuple block of information symbols. The resultant codewords are
transmitted, corrupted by channel noise , and decoded independently of
all other received codewords. Tree codes, on the other hand, process
information continuously, associating message sequences with code
sequences on the basis of the present message and of previously
encoded messages. The best known Tree codes are a subclass called
Convolutional Codes.

Block codes have been quite extensivelyanalyzed -In the 25 years
s ince Shannon ’s famous article. These codes can be rigorously

associated with many algebraic and geometric concepts. The algebraic

foundat ion of many “strong” (i.e., powerful multiple error-correcting)
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codes facilitates reasonable Implementation of encoding and decoding
circuitry. Initial investigat i ons undertaken as part of MITRE ’s
Low Cost Electronics project (7010) have concentrated largely on
block code application studies and the realization of low-cost
decoding hardware for these codes.

Al.l Finite Field Ari thmetic

An algebraic system Is termed a finite field If it contains a
fini te set of elements for which the operations of multiplication ,
addition , and their inverses are defined, and if every non-zero
element in the set has a multiplicative inverse. Considering a
finite binary field of two elements (0, l),addition and multipl ication
can be defined modulo-2. Generally, a modulo-q reduction is expressed
in a congruence relationship where an integer Z in the finite field
is said to be congruent to E motlulo-q written Z E mod q if and only
if, by the Euclidean Algori thm,[1] Z = Dq + E, where 0 �. E < q. In
the binary field q = 2. In general a field can be defined over any
number q which is a positive power of a prime number, i.e., q =

Thi s is termed a Ga loi s Field , GF(q) or GF(Pm). If m = 1, the field
is called a base or ground field. All algebraic operations in the

base field are defined modulo-p. If m > 1 , the field is termed an
m-extension field of characteristic p and all algebraic operations
are defined modulo-p(x), an mth degree polynomial having coefficients
in the base field. The q fiel d elements of GF(q) can be expressed
as m-tuples over the base field GF(p). The mth degree modulo—
polynomial p(x) that defines the ari thmetic operations in GF(Pm) j~
indivisible by any other polynomial of degree less than m and greater
than 0, for this reason It is termed an i rreducible polynomial.
Furthermore, all non-zero elements of GF(q) can be generated by
utilizing one element of the field (a) called a primitive element,
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where p(a) = 0, and successively calcul ating powers of this m-tuple
element reduced modulo-p(x). It will be found that all of the q-l
non-zero elements of GF(q) can be generated in this manner before j
any element repeats. It would seem then that if an m degree
polynomial p(x) with coefficients over GF(p) is wisely selected, it
should be possible to uniquely generate all the elements of GF(Pm).
This Is indeed the case and such a polynomial is called a primi tive
irreducible poly~nomial.

Al.2 Linear Block Codes

Consider a k—digit information message sequence, where each
digit is any field element of GF(s). There are, therefore , 5k unique
message sequences we may wish to transmit. If we isomorphically
ass ign eac h information messa ge sequence , to an N-digit,N .~~. k,channel
“transmiss ion” message sequence, where each channel digit is any
field element of GF(q), where qN > 5k , we have a set of size M =

q-ary N-tuple channel “codewords ” . Any such M sequence set of q-ary
N-tuples so assigned is called a block code. Al ternatively, If a

~ k-length sequence of information digi ts is mapped into an N-length
sequence of channel digits , such a block of channel digits is called
a codeword, and the finite set of codewords resulting from the mapping
of a ~ln ite set of k-length information sequences comprises a block

.5 code. If our isomorphic mapping is a linear transformation we say
the resultant code set is a linear block code. The nature of the
transform employed profoundly affects the structure of the code and
exploiting the algebraic structure of this transform leads to
efficient encoding and decoding methods.

Al.2.l Cyclic Codes

Consider a block code of q-ary N-tuples as comprising 
- 

-

a vector space M,.~, wherein each code vector S = 

~~~~~~~ 

- .

~~

, • 
~ ~N—1 1 .5
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contains N elements and each element can be any member of GF(q). If
any vector S = 

~ N-l’ S0~ s.~, . . - SN_ 2 ), formed by cycl ically
shifting the components of S Is also In MN, then such a set of
cyclically shifted code vectors is called a linear cyclic code. The
N-length codewords over GF(q) of a linear cyclic code (vectors of
the vector space MN ) can be assoc iated with the algebra of residue
classes of polynomials modulo X -1. Under such an association ,
we can represent the information sequences , codewords, and even the
isomorphic transformation between them in polynomial form, i.e.,
corresponding to every N-tuple (a 

- 
, a 

- 
, . . . , a ) there is a

polynomial of degree N-l or less, e.g., C(x ) = aN.l X N 1  + aN ..2 X 
- 

+

. . . + a0. Consider the l east-degree codeword N-tuple polynomial
in a linear cycl ic code as C’(x) c + c X + c X2 + . - . c ~

r—l +

CrX i.e., an r degree polynomial, were c.~ 
= 0, r < I, < N-l .

Call this l east degree polynomial g(x) instead of Ctx). Since the
code is a cyclic code, the code polynomials Xg(x), X2g(x), . .
~
N-r_1 

g(X) (i.e., shifts of g(x)), are also codewords. Since the
code is a linear cycl ic code, any linear combination of these code— 

.5

words must also be a codeword , or

C(x ) = W0g(X) + w1Xg(X) + . • + WN_r_l x
N-r_ lg(x)

= (W0 + W1X + . . . +

= W(X)g(X) (1)

Therefore , the message polynomial may be deflne~ as W(x ) , the code-
:1 word as C(x), and the transform or generator polynomial as g(x).

Since the objective Is to create an (N,k) l inear cyclic code, .5

associating an N-tuple code vector with C(x) and a k-tuple message
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vector with W (x ) , requires that the degree of the code polynomial
C(x) be N-l , the degree of the desired message polynomial be k-i ,
and the degree of the generator polynomial must therefore be N-k.

Equation (1) illustrates that any cyclic code polynomial
can be evenly divided (i.e., wi thout a remainder) by its generator
polynomial g(x). Define a.i , a2, 

~3 
. . ., 

~~ 
(as possibly

distinct) roots of c(x) over GF(q), then c(ct1) 
= 0 for 1 < 1 < N-i .

Define the minimum polynomial of a1 as the moni c polynomial m1 (x )
of smallest degree wi th coefficients over GF(p), (the base field),
such that m1(ct 1) = 0. By Euclid’ s Al gorithm, c(x) = m1(x )q(x) + r(x)
and since c( cti) = 0 and m1 (ct i) ~ 0, r(a1 ) must be equal to zero ,
and therefore m1 (x) divides c(x). Since all the minimum polynomials

m1(x) divide c(x), their least common multiple must also divide
c(x ) and therefore:

g(x) = LCM ~m~(x ) , m2(x ) n~ ( x ) ~ (2)

Al .2.2 BCH Codes
.5 

The set of codes devised by Bose, Chaudhuri , and
Hocquenhem (BCH codes) is a generalized case of the well known binary

.5 
Hamming codes. Further generalized to codes in ~m symbols by
Gorens tein and Z ierler, these codes were designed to correct additi ve
errors on symmetri c , one-way, memoryless , Hammi ng-metric channels

which employ orthogonal signalling .161 It has been shown that insofar
as such channels approximate “real-world” communications paths ,
employing BCH codes resul ts in signifi cant improveme nts in channel
reliability .

-.5 
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BCH codes are formally defined as follows: if a Is a
field element of GF(c~ ) , choose any m0 > 0 and any d (2 j d  c N),
and form the d-l powers of ctmO , a

m0+1 
, ~~~~~~ The

lowest degree generator polynomi al g(x) over GF(q) which contains
these powers of a as its roots generates a q-ary BCH code, with

.5 block length N = qm - 1. The generator polynomial of this q-ary
BCH code, being a linear cycl ic code, is similar to equation (2), or:

= LCM 
~
mm (x), %

~
+1 (x) . . . . , %~~~~(x )~ (3)

where mm0+i 
(x ) 

~ i ~~. d-2, are the mi~iimum polynomials of the d-1 
.5

roots. We know that in order to correct t or fewer symbol errors in
a ~I ,k) q-ary BCH code, the minimum Hamming distance d between code-
words must be related to t by 2t = d-1. Using this relationship
and setting m0 

= 1 in equation (3)

g (x) BCH = LCM ~m1 (x ) m2(x) , m~~(x )~ (4)

The qm..l non-zero elements of GF(qm) compri se a fini te
set. Consequently, if we form the powers of one element of the field
a, as a1, then these values mus t begin to repeat at some power i = j.

The smallest positi ve value of j where this occurs is called the
order of the element. The degree of any of the minimum polynomials
m1 (x) in (4) is the least integer z such that the order of a

1

divides qt -1. All m
~
(x) are i rreducible, since these polynomials

have no factors with coefficients in GF(q). The order of the roots
of an i rreducible polynomial is called the exponent e to which that
polynomial belongs . If an i rreducibl e polynomial belongs to e then
it divides X e_ i but no polynomial of the form X’~-l ‘~or any n c e. If a
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is chosen to be a primiti ve element of GF(qm), i.e., It is possible
to generate all of the qm_ 1 non-zero elements 0-f GF(q m

) from powers

of a, then its order is q
m_ 1• Al ternati vely, the maximum order of

an element of a fiel d is achieved when that element is primitive.
The minimum polynomial m1(x) in (4) derived from the primi tive
element a, is called an Irreducible , Primitive Polynomial. Since
one of its roots is primitive , all of its roots are primitive and
of the same order , i.e., m(x) belongs to qm_ l .  The degree of m

~
(x)

is therefore m and from (4) it can be seen that the degree of g(x)
and the number of pari ty check symbols is N-k .~~ 

2mt.

In Section A l.2.l it was shown that all of the minimum
polynomials m (x) of (2) divide the code polynomials. Therefore,

the degree of the code polynomials (N) must be the Least Common
Multiple (LCM) of the exponents to which the minimum polynomials
m
~
(x) belong. This is equivalent to the LCM of the orders of the

roots of m1(x). As we have previously shown, the maximum order of
an element resul ts when that element is a primi tive element or qm_l ,

therefore N = qm_1~ More generally, since all of the roots of g(x)

are also roots of C(x ) , the length of the code is the leas t comon
multiple of the orders of the roots. This is because the elements
of GF (qm) form a multiplicative group wherein the order of any
element divides the order of the group , and the least common
multiple of such a group must be qm_ l. Codes formed in this manner ,
wi th a taken as a primitive element of GF(q m) are called “primitive
q-ary BCH” codes .

By far the most common of all q-ary BCH codes are the

binary codes where m0 = 1, p = 2 , and m=  1. As a consequence of
these parameters , for any positive integer m and t (where t < N/2)

there exists a binary BCH code of:

Code Length: N = - 1
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No. of Parity Check DIgits : N - k � mt

and g(x) = LCM m1 (x) , m3(x) ,

Binary BCH codes have been widely analyzed and published .
.5

, 
Our efforts , however, will concentrate on non-binary BCH codes, and
in particular a special subclass , the Reed-Solomon codes.

Al.2.3 Reed-Solomon Codes

In Section Al .2.2 it was shown that for a primiti ve q-ary

BCH code, a primiti ve element cx was defined over an rn-dimensional
extens ion field GF(qm ), and coefficients of the generator polynomial
g(x) were defined over the base field GF(q) . If m = 1, the extension

field over which the primitive element is defined Is the same as the
base field for the code elements. A q-ary BCH code of this type is
called a Reed-Solomon code. Since a is primiti ve its order is q - 1
and therefore the code length i s N = q - 1 .

Because the extens ion field and the base field are
equivalent , the minimum polynomials m (x) of (4) can be simply
expressed as: m~(x) = X - a

1
. The generator polynomial of an

(N ,k) q-ary R-S code then becomes

g(x) = ( x  - a) (x  - a2)(x - a~ ) . . . (x - cz2t) (5)

It is obvious from (5) that the degree of g(x) is 2t and therefore

the number of pari ty check digits Is:

N - k = 2 t = d -  1 (6)
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Manipulating equation (6), It can be seen that the Hamming distance d
of an (N ,k) R-S code is N - k + 1. Codes exhibiting this distance
are called “Maximum Distance Separable”. That this minimum distance
is indeed “maximum” can be shown by recalling that the minimum
distance of a code is equal to the minimum weight of any non-zero
codeword. In any systematic R-S code there exist codewords wi th only
one non-zero information symbol . In addition to this one non-zero
symbol , there are only N-k remaining symbols that can be non-zero,
so the “maximum-minimum ” weight of such words can be no greater than
N - k + 1. Note that the maximum distance separable equation,

d = N - k + l  (7)

is satisfied for only two trivial cases of binary linear codes:
(a) repetition codes , where k = 1 and d = N and , (b) single parity-
check codes , where k = N - 1 and d = 2. There fore , R-S codes ,
unl ike any non-trivial binary codes provide maximum distance properties.

The block length of any R-S code is N = q - 1 and therefore
an (N,k) code can be thought of as a (q-l , q-1-2t) code.

If the field size q is a power m of a prime number p, i.e.,
q = ~m then we can define binary , non-binary, base f ield and
extension field versions of R-S codes. The q-ary symbols of such
codes can be considered as m-tuples over GF(p) and a t-symbol error
correc ting ~pm_1 , pm..l ...2t) R-S code over GF(Pm) can be regarded as a
(m(Pm_l), m(Pm_ l_ 2t)) code over GF(p). Viewed in this way it is
obvious that the code is capable of correcting any error pattern

whose non-zero digits are confined to t rn-symbol blocks .

Initial hardware efforts in microprocessor implementations
of short error correcting codes have been focused on a simpl e binary
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extension field multiple-error correcting (7,3) R-S code. The
coding advantages of R-S codes have been previously shown. In

particular , the binary extension field (7,3) R-S code was chosen for
3 reasons:

1. There is current interest in (7,3) coding for anti-jam
protection in our DME data link work (Project 90020).

.5 

2. A short code l i k e  the (7 ,3) allows simple maximum-
l ikelihood decoding schemes to be employed.

3. A code over GF(23) allows the realization of efficient
arithmetic operations in current MOS microprocessor
architectures utilizing 8-bit word lengths .

The (7 ,3) R-S code is a multiple error correcting code over
GF(2 3) constructed to correct any two symbol errors per block.
The basic co~~ parameters are :

BLOCK LENGTH N = q - 1 = 7

No. of Information Symbols : k = 3
No. of Parity Check Symbols: N - k = 4

.5 Symbol Al phabet Size : q = N + 1 = 8
Haming Distance : d = N - k + 1 = 5

Error Correction Capability : t = fd - 11 = 2
(symbols) L “2 -‘ INT

The elements of the extens ion field GF(23) can be represented
as 3-tuples over the binary base field GF(2). All operations in this
extension field are defined by a polynomial operation. The 3-tuples
of the field can be generated by a 3rd degree i rreducible primitive
polynomial p(x) with coefficients over GF(2). Choosing p(x) =

x3 + x + 1 as such a polynomial , the q = 2~ = 8 binary 3—tuple
field elements are:
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Field Field Element Binary
Element Modulo - p(x) 3-T~p~~

0 = = 0 0 0

a0 = 1 = 0 0 1

a = a - 0 0

a2 ‘ = a2 = 1 0 0
.5 

a3 = c x + l  = 0 1 1
4 2
a = a + a  = 1 1 0

a5 = a2 + c x + l  = 1 1 1

a6 = a
2 + 1  = 1 0 1

The generator polynomial g(x) from (5) becomes:

g(x) = (x - a) (x - a2)(x - a~) ( x  - a~ ) (8)

Since - a1 
= + a1, (i.e., subtraction and addition are equivalent

in modulo-2 operation), equation (8) becomes:

g(x) = (x + a)(x + a2 ) ( x  + a3)(x + a
4

)

X4 + a 3 x3 + a ° x2 + c t1 x + a 3 (9)

A1 .3 Encoding

.5 
Recalling equation (1) for cyclic codeword generation we can

construct a codeword for any message polynomial w(x). There are qk

unique messages represented by k-l degree message polynomials of the
form : w (x ) = wk l  X~~’ + wk~2 

x
k_2 

+ . . . + wX + w0.
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Example 
. 

.5

The (7 ,3) Reed-Solomon code has a generator polynomial:

g(x) X4 + a 3 X3 + a 0 X2 +a l X + a 3

encoding the message (a1 
a6 a5), from (1):

c(x) = w(x) g(x) (1)

= (cx l x2 
+ a6X + a5) ( X 4 

+ a3X3 + a0X2 + a1X + a3) I -

= a1
X
5 

+ a3X
5 + c*°X 4 + cx

3X 3 
+ a0X +

therefore the encoded codeword is:

1 3 o 3 o 1(a a a a a a

Note the coef fic ient of the message polynomial is always equal
to the X~~

1 coefficient of the codeword, a1 in thi s example. This is
so because g(x) is a monic polynomial . However, none of the other

.5 
message polynomial coefficients directly appear in the encoded code-
word. Therefore, encoding using equation (1) results In the genera-
tion of Non-systematic codewords, i.e., codewords in wh ich the
message is not immediately discernable. To recover the message, given
a received (possibly corrected) non-systematic codeword, another
operation must be performed. Obviously, one such possible operation
is to simply divide c(x) by g(x) to recover w(x).

Ideally, It would be better (quicker) If the message could be
directly extracted from the received codeword wi thout further manip-
ulation.

This Is possible via the generation of Systematic codewords.
These codewords are generated so that the message sequence Is itself
part of the codeword . Systematic codeword generation represents a
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tradeoff between an increase in encoding complexity and the ease of
message extraction given a received (corrected) codeword. Consider
the following codeword formations.

Given a message polynomial ,

w (x) = w k l  + W k_ 2 xk_2 + + w1X +

multiply by x~ k,

x t4
~

( w(x) = wk~lX + wk_2X
N_2 + + w 1X N

~~~
’
~ +

divide by g(x) and express the result as a quotient q(x) and remainder
r(x) ,

xN~~ w(x) = q(x)g(x) + r(x) 
.5

— - .5

deg �. N-i deg .�. N-i deg .~~ N-k-i

.5 

or

r(x) + X~~
kw(x) = q(x)g(x) = c(x)=(the desired systematic codeword)

r0 + r 1X + r2X 2 + . + rN k 1  X~~~~ +

PARITY CHECK POLYNOMIAL

w0 + w1X~~
1
~~ + + Wk l  (10)

MESSAGE POLYNOMIAL
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EXAMPLE:

For the (7 ,3) R-S code, cons ider the message (a ’1 
a
6 
a
5
),

w (x ) = a
1
X2 + a6X + a5

mul tiplying by XN..~ , .5

x4 w (x ) = a
1
X
6 + a6X5 + a5X4

dividing by g(x), letting q(x) be the quotient and r(x) the remainder,

x4 w (x ) g(x) = a
1

X
2 

+ a3X (a
5

X
3 

+ a
6X)

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~

q(x) r(x)

from (10)

c(x ) = cz
1X 6 

+ a6X5 + a5X 4 (ct 5X 3 
+ a6X )

w (x ) r(x )

The systemati c codeword is then (a 1 
a
6 a

5 
a
5 0 a6 0)

msg pari ty-check
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For the short (7,3) R-S code used in the examples, there are
only 512 possIble codewords. Therefore, a simple table-look-up
encoding procedure could be implemented by constructing a table of
valid codewords and addressing the correct codeword In the table via
a pointer determined by the message to be encoded. Wi th this method
of encoding it Is clear that either a systematic or non-systematic
approach Is viable. One advantage of the systematic approach,
however, is the Immediate recognition of a correct encode operatIon.
For decoding, however , systematic codewords clearly save the additional .5
step of message extraction from the received (corrected codewords).

From the above analysis it may be concluded that for short
block codes a table-look-up encoding procedure is appl icable to
systematic or non-systematic codeword generation. For long block
codes the trade-offs necessary to effect such a solution involve table
storage versus polynomial encoding time via equation (1) for non-
systematic or (10) for systematic codewords .

A l.4 Decoding

Equation (1) or (10) shows that a valid codeword is divisabl e
by its generator polynomial wi th no remainder . Given a received -

codeword polynomial r(x), it is possible to di vide r(x) and interpret
any non-zero remainder as evidence of transmission errors. Such a
procedure determines what is known as the error syndrome.

r(x) = c(x ) + e(x)

= w(x) g(x) + e(x)  ( 11)

R(ct 1) = w(ct1) g(a1) + e(a1)

= e(a 1) A S,~ ; g(ct1) = 0

- 
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Equation (11) illustrates that the syndrome components S~ contain
information relative to the error pattern e(x). .5

.5 If an array is formed wi th all possible codewords (including
the all zero codeword) as the first row and all the correctable
error patterns listed as the first column , ordered for increasing weight,
(i.e., the number of non-zero components), the remainder of the array
can be filled In by adding each codeword to every error pattern,
making sure no N—tuple appears more than once. An array so con-
structed is called a Standard Array and each row is called a Coset
with the error patterns heading the rows termed Coset Leaders.
Equation (11) indicates that every error pattern has a unique syndrome

.5 

associated with it. Therefore decoding a received codeword in the
s imp les t sense requi res ( 1 ) calcula ting the syndrome from the
rece ived (corrupted ) codeword , (2) associating the calculated syndrome

.5 wi th its unique error pattern , and (3) know ing the corrupt ing error
pattern, correcting the received codeword .

Al though the decoding procedure as stated in the previous
paragraph may sound simple enough , actual decodi ng al gorithms to
implement this procedure can be quite complex or lengthy . In the
development of coding theory there have been many decoding techniques
proposed. Using the standard array itself Coset Decomposition
(Ta b le Decoding )17’ and Step-by-Step decoding1~1 have been proposed.
For certa in orthogonal izable codes , Threshold Decoding181 or
Majority Logic151 decoding have proven effective.

Error trapping171 and Permutation Decod ing~5’ have also been
demonstrated as successful decoding strategies for some classes of
cycl ic codes. .5

Al though all of the aforementioned decoding techniques are
effective under varyi ng code constra ints , we have chosen to look at
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two vastly different decoding strategies. One approach, Maximum-
Likelihood Decoding, is trivially simple in nature. The other,
Al gebraic Decoding, is a powerful but complex implementation of the
basic decoding strategy outlined earlier.

Al .4.l Al gebra ic Decoding

One of the truly revolutionary decoding algorithms to arise
in the study of error coding is a decoding scheme based on the con- .5

structive properties of abstract algebra . By associating the digits
of certa in classes of li near cycl ic codes , most notably the BCH codes,
with elements of the finite field over which that code is defined, i t  

.5

i s poss ible to def ine an “Error Locator Polynomial ,” whose roots
reveal the l ocation of the digits which are in error.

This algebraic BCH decoding a1gorithm 19~ involves four
distinct steps:

1. Calculation of the error Syndrome.

2. Determination of the coefficients of the Error
Locator Polynomial .

3. Discovery of the error l ocations of the received

- 

s (corrupted) codeword, i.e., the roots of the Error
Locator Polynomial , and ,

.5 4. Calcula tion of ’the error values at the known error
locations and correction of the received (corrupted)
codeword.

The BCH decoding algori thm is an extremely powerful
decoding technique and is the basis of much current decoding effort
for long (multi-error correcting) block codes. The degree of
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computational complexity invol ved, however, is much greater than
that easily handled by our objecti ve single NMOS microprocessor
and therefore a s impler algorithm, sui ted to short codes and simple
computation , is sought.

Al.4.2 Minimum Distance Decoding (MDD) .5
The Distance between two codewo rds i s defined as the

number of symbols by which they differ. The Hammi ng Weight of a
codeword is equal to the number of non-zero symbol s in the codeword.

.5 

The Minimum Distance of a code is the least distance between any two
codewords in the code set. Since all zeros is a valid codeword, it
can be stated that the minimum distance of a code is equivalent to
the minimum weight of any non-zero codeword in the set. By employing
these definitions a simple proof of the viability of MDD can be
constructed.

Cons ider the follow ing equi valenc ies:

R = a received data sequence (i.e., a codeword wi th errors)

= the 1th codeword ; the codewor d transmitted
= any ~th codeword (j � I) not transmitted

E~ = R-C~; the ~
th error pattern resulting from math—

ematically combining the received
data sequence and any valid ~th code-
word except the one transmi tted

E1 = R-C1; the actual error pattern affecting the
transmitted codeword

Denote the Hamming weight of E~ as !IE ~ I l~ then s ince
= R-C 1

and E~ = R_ C~
.5 it follows that

.5 ‘ 
.5 
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E~ = E1 — C~~+ C 1
and I IE~ H = HE~ + (C i — C~)~ I. (12)

For proper (correct) decoding the weight of the actual
error pattern must be less than or equal to the symbol error
correction capability (t) of the code. Mathematically, the statement
is 11 E 11 1  .i t.

Because the code is a linear group code the combination
of two codewords is s imply another codeword and that codeword must
have weight at least equal to the minimum distance (d) of the code or

HC 1 
— C~ H �. d

.5 Analyzing the right hand side of equation (12), therefore, it can be

seen that some error pattern E1 wil l conta in the exac t necessary
error symbols in correct symbol positions to produce (reduce to zero)

t more zero symbols in the combination pattern E1 + C1 - C~ than in
.5 C1 - C~ alone. In other words, the weight of E1 + C

~ 
- C~ may be

as low as d - t. Since this represents the worst (minimum weight)

case , the weight may be greater and equatIon (12) becomes,

HE~ I )  = I~ E1 + (C 1 - C~) I I  ~ d - t (13)

Ideally, the weight of the error pattern E~ resulting

from combining the received data sequence R wi th any codeword C~
not transmitted will be greater than the weight of the actual error 

.5

pattern E1 or,

I I E~ I I >  11 E 1 11
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A sufficient condition for this to occur is,

.5 d - t �  I I E~ H > 11 E 1 11 .�. t

so d - t > t

d > 2t
d - l � , 2t
d - l � , t  (14)

Equations (13) and (14) show that if a transmitted
codeword is corrupted by an error pattern with t or fewer symbol
errors , that codeword will be decoded correctly by MDD. Al ternatively,

.5 the distance (i.e., the weight of the error pattern) between a
received (corrupted) codeword and any improperly decoded codeword
(i.e., a codeword not transmi tted) is at least d — t if  the

rece i ved (corrup ted) codeword i s di stance (d - 1)12 or less from .5

the correc t ( transmitted) codewor d .

An ERASURE i s defined as a symbol error whose location is
known . Merely knowing that a certain received symbol Is in error
without knowi ng the value of the error is helpful additional informa-
tion in the decoding process.

The preceed i ng MOD p roof ~.an be easily modified to
inc l ude errors and erasures as follows : Let:

:~ = the 1th codeword ; the codeword transmi tted with s
erased symbols deleted

= any ~th codeword (j $ I) not transmi tted wi th s
erased symbols deleted
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R = the received data sequence (corrupted codeword)
includ ing s erased symbols

as before R -

If the number of symbol errors (not counting erasures) in the

actual error pattern is less than or equal to the error-correction
capability t of the code ,

Ii ~i I I It

and the weight of any codeword with erased symbols deleted is
greater than or equal to d - s ,

I1 C k H i i C.~ 
- Ciii ~. d - s.

Similarly wit h the derivation of (13):

I I ~~H = I ( ~. + (c . — c~) i i  �.d — s — t, (15)

and for i i E~H > HE 1H, we have

d -  s - t> t

or 2t+ s .~~d - 1 • (16)

Equations (15) and (16) show that the distance (i.e., the
weight of the error and erasure pattern) between a received (corrupted )
codeword and any improperly decoded codeword (i.e., a codeword which
was not transmitted) is at least d - s - t or greater if the received
corrupted codeword is distance (d - s - 1 )/2 or less away from the
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correct (transmitted) codeword. Note that if neither equation (14)
nor (16) are satisfied, the errors and erasure handl ing capability
of the code has been exceeded and MDD will result In a decoding

decision including the closest codeword or possibly an indication
that the received (corrupted) codeword is equidistant from more
than one valid codeword.

From the above proofs it is quite clear that minimum
distance decoding will result in correctly decoding codewords if the
l imits of the code are not exceeded. The operations involved are
simply to compare the received (corrupted) codeword symbol-by-symbol
(ignori ng the declared erasure symbols) wi th a table of valid
codewords and choose the codeword that is the least distance away
as the decoded choice. It is not always necessary to search the
enti re table, since anytime a codeword is located distance (d - s - 1)12
or less away, equatior~ (15) and (16) guarantee that there are no
other codewords any closer.

In order to employ this trivial MDD algori thm for decoding

R-S codes, it is necessary to have a table of valid codewords with
which the received codeword can be compared. This is certainly a
viable decoding method for short block codes but as the block size
of the code Increases the table size and search time grow exponentially.
Figure A-l ind icates the required storage (in 8-bit bytes) for short

R-S codes of differing block length N and information symbol content k.

For our example (7,3) R-S code,a table of 512 codewords (1344 bytes)

is required. Note that as the block length N increases, (shown only
for R-S codes over binary extension fields), the required storage

size becomes extremely large. The dashed line at 65K bytes
illustrates the limi t of addressability of current 8-bit MOS micro-
processors wi thout resorting to some form of extended memory management
addressing techniques. Not only does the table size increase

94



— 
-= 

! ~~~~~

exponentially, but the time required to search through a large
table increases exponentially also . Assumi ng a microprocessor requires
30 microseconds to fetch and compare one codeword symbol, Figure A-2
shows the table search time for one-half 0f all table codewords for
varying code sizes. From storage and search time constraints alone,
clearly our trivial MDD algori thm is only applicable to short R-S
codes , given the present state-of-the-art of 8 bit NMOS micro-
processors .

I
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ACRONYMS USED IN THIS REPORT

AID/A ANALOG/DIGITAL/ANALOG
ALU ARITHMETIC LOGIC UNIT
AND ADVANCED MICRO DEVICES
BCD BINARY CODED DECIMAL
BCH BOSE-CHAUDHURI -HOCQUENHEM

C0~t4AND, CONTROL AND COf’tIUNICATIONS
CCD CHARGE COUPLED DEVICE
CPU CENTRAL PROCESSING UNIT
DIP DUAL-INLINE-PACKAGE
DMA DIRECT MEMORY ACCESS
ONE DISTANCE MEASURING EQUIPMENT
DOD DEPARTMENT OF DEFENSE
DII DIODE-TRANSISTOR LOGIC
ECL EMITTER-COUPLED LOGIC
ESD ELECTRONIC SYSTEMS DIVISION
GF(q) GALOIS FIELD OF q ELEMENTS
I/O INPUT/OUTPUT
IS! LARGE SCALE INTEGRATION
MOD MINIMUM DISTANCE DECODING
MOS METAL-OXIDE-SEMICONDUCTOR
NMOS N-CHANNEL METAL-OXIDE SEMICONDUCTOR
nS NANOSECOND
PMOS P-CHANNEL METAL-OXIDE-SEMICONDUCTOR
RAM RANDOM ACCESS MEMORY

RC RESISTOR-CAPACITOR
RON READ ONLY MEMORY
R-S REED-SOLOMON
RTL RESISTOR-TRANSISTOR LOGIC
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